
RangeSanitizer: Detecting Memory Errors with Efficient Range Checks

Floris Gorter
Vrije Universiteit Amsterdam

f.c.gorter@vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

Abstract
Sanitizers for spatial and temporal memory errors have be-
come a cornerstone of security testing. Popular redzone-based
sanitizers such as AddressSanitizer (ASan) offer high compat-
ibility and effectiveness through the use of redzones, but incur
significant runtime overhead. A major cause of this overhead
is the traditional use of per-object redzone metadata, which
constrains the sanitizer to check individual addresses rather
than entire ranges of memory at once—as is done by classic
bounds checkers based on per-pointer metadata.

In this paper, we introduce RangeSanitizer (RSan), a
redzone-based sanitizer that introduces a novel metadata and
check paradigm. RSan combines the compatibility of red-
zones with a rich per-object metadata format that allows for
range (rather than address) checks and powerful optimiza-
tions. RSan stores bounds information inside the underflow
redzone associated with each memory object. By combining
pointer tagging with power-of-two size classes, RSan can
swiftly locate metadata and validate an access to an arbitrary
memory range with a single check. RSan incurs a geomean
runtime overhead of 44% on SPEC CPU2017, faster than
all state-of-the-art redzone-based sanitizers and twice as fast
as ASan. Additionally, fuzzing with AFL++ and RSan as
sanitizer improves state-of-the-art throughput by up to 70%.

1 Introduction

Memory errors such as buffer overflows and use-after-frees
are still the leading cause of security issues in produc-
tion [23, 45], with serious real-world consequences as also
evidenced by the recent CrowdStrike incident [14]. Over time,
different solutions have been proposed to detect memory
errors. Bounds checkers first addressed spatial memory er-
rors by associating base and bound information with every
pointer. By tracking such per-pointer metadata throughout
the execution, out-of-bounds pointer dereferences can raise
an alarm. Early adopters use rudimentary schemes based
on fat pointers [5, 34, 49, 59]. To improve compatibility,

later installments store bounds metadata in a disjoint struc-
ture [17, 35, 53, 64] and allow nondereferenced out-of-bounds
pointers [2, 16, 18, 38, 47, 55, 58, 65, 68]. Nonetheless, per-
pointer metadata tracking still poses compatibility challenges
(e.g., supporting pointer to integer casting [9]) other than in-
curring significant performance overhead [52].

Roughly a decade ago, AddressSanitizer (ASan) [56] and
LBC [29] shifted away from the per-pointer metadata tracking
model, and instead popularized a per-object metadata design.
These solutions use redzones [30, 51, 54] to denote invalid
regions of memory (e.g., inter-object padding) and track per-
object metadata to distinguish valid from redzone addresses.
Although spatial detection guarantees are reduced due to the
limited redzone size, this strategy improved compatibility and
performance while also extending detection capabilities to
temporal errors. Since then, redzone-based sanitizers have
been widely adopted by modern fuzz testing campaigns and
also received much attention in literature, with adaptations to
improve metadata management [33] as well as remove [39,
62, 63, 67, 69] or accelerate [25, 42] checks.

While redzone-based systems offer many benefits, a valu-
able asset was lost in the transition from the per-pointer meta-
data world: the ability to efficiently validate an entire range of
memory in one go, as done by classic bounds checkers. For in-
stance, consider a memset(buf, 0, x) operation. With per-
pointer bounds metadata, two comparisons suffice to check
that addresses buf and buf+x are within bounds. In contrast,
a solution like ASan needs to iteratively scan the entire [buf,
buf+x] range for the presence of redzones. Despite recent
optimizations to reduce the number of scan iterations [42,69],
the performance of existing redzone-based sanitizers is fun-
damentally limited by the need to check individual addresses
rather than entire memory ranges at once.

In this paper, we introduce RangeSanitizer (RSan), a
redzone-based sanitizer for heap, stack, and global memory
with a novel metadata and check format that enables fast
range-based checks as seen in traditional bounds checkers.
RSan combines the compatibility and effectiveness of red-
zones with rich per-object metadata and optimizations in-
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spired by per-pointer metadata solutions—a best of both
worlds. As a result, RSan is able to check an arbitrary (range
and non-range) access for buffer underflow, overflow, and use-
after-free, all with one metadata lookup and one comparison.

Conceptually, RSan functions by quickly retrieving the
base address of any memory object, and locating the upper
bound information (i.e., where the object ends) stored inside
the redzone that directly precedes the base. RSan ascertains
the validity of memory accesses by evaluating whether an
access is within the upper bound associated with the corre-
sponding object. As a result, RSan avoids disjoint metadata
structures (like shadow memory [50]), without introducing
any unwanted false positive bug detections [25].

More specifically, RSan finds the base address of objects
by combining a power-of-two allocator with size classes and
pointer tagging. Upon allocation, RSan pads objects with
redzones, and stores the corresponding power-of-two size
class in the upper bits of the resulting pointer. Subsequent
memory accesses can quickly retrieve the base address by
reading the pointer tag and masking off the size class from
the pointer. The upper bound metadata then resides in the
underflow redzone, exactly eight bytes before the base.

We show that this design enables powerful compiler-based
optimizations that are traditionally unavailable for address-
based sanitizers. In contrast to recent work, we avoid non-
conservative optimizations that violate the C standard [42]
or allow potential corruption of metadata [69]. Furthermore,
we show that modern address masking features (e.g., Arm
Top-Byte Ignore [4] and Intel Linear Address Masking [32])
improve the memory overhead of RSan. However, RSan also
supports systems where address masking features are not
available (e.g., legacy x86) through implicit pointer tagging.

We evaluate the performance of RSan and show that, with
44% geomean runtime overhead on the SPEC CPU2017
benchmarking suite, RSan outperforms all the state-of-the-
art redzone-based sanitizers [25, 42, 56, 69]. Our evaluation
also shows that RSan is a generic solution that performs well
regardless of the underlying hardware, in contrast to a more
hardware-sensitive sanitizer like FloatZone [25] which relies
on acceleration from a powerful FPU. Additionally, we show
that fuzzing with AFL++ and RSan as sanitizer increases state-
of-the-art throughput by up to 70%. Finally, we show that
RSan provides the same memory error detection guarantees
as ASan and even covers some more bug scenarios.

Contributions We make the following contributions:

• We introduce a novel metadata format that stores bound
information inside redzones and pointer tags.

• We show that the resulting design allows for efficient
range checks to detect spatial and temporal errors.

• We present and open source RSan for both x86 and Arm,
and evaluate it against state-of-the-art sanitizers.

Source https://github.com/vusec/rangesanitizer

2 Background

We consider sanitizers to detect spatial and temporal mem-
ory errors. Spatial errors such as buffer overflows stem from
accesses that occur outside the bounds of an object. Temporal
errors such as use-after-free stem from accesses that occur
outside the lifetime of an object. We consider two main meta-
data formats to detect such errors: pointer-based and redzone-
based. Alternative strategies do exist, but such solutions are
less favorable for general-purpose security testing, being of-
ten limited to a single vulnerability class [15, 24, 26, 37] or
relying on specific hardware extensions [27, 40, 70].

Pointer-based By tracking base and bound (or size) meta-
data for every pointer, bounds checkers enforce that pointers
only refer to or access the intended object. The metadata is ei-
ther stored inside the pointer or is associated with the pointer
in a disjoint data structure. The checks evaluate whether a
memory access is within the valid range, i.e., above the lower
bound and below the upper bound. One significant drawback
of pointer-based metadata is the incompatibility with integer
arithmetic on pointers, for example due to alignment [9].

Redzone-based With redzones, metadata is associated with
memory objects instead of pointers. Fundamentally, redzones
serve as inter-object padding and sanitizers detect bugs by
evaluating whether an access operates on a redzone or regular
(valid) memory. Freed memory can similarly be marked as a
redzone to detect temporal errors. Redzone-based solutions
often use shadow memory [50], a disjoint metadata structure
that tracks which areas of memory are valid.

3 Overview

RSan’s primary goal is to sanitize spatial and temporal mem-
ory errors with high performance and compatibility. To this
end, RSan introduces a metadata format that enables checking
the validity of a range of memory with a single comparison.
Fundamentally, RSan detects bugs in programs written in
unsafe languages such as C or C++ through compiler-based
instrumentation and a modified memory allocator. Figure 1
displays a high-level overview of RSan’s components.

At its core, RSan operates on memory objects (e.g., heap
allocations), pointers to objects, and accesses to objects (i.e.,
load and store operations). Crucially, RSan finds memory
errors at runtime by equipping the source code with sanitizer
checks. These checks evaluate all load and store operations for
validity and abort the program in the case of a memory error.
In order for the checks to function, RSan requires memory
objects and pointers to follow a specific organization.

More specifically, RSan uses a custom memory allocator
to protect memory objects by surrounding them with inac-
cessible memory areas (commonly called redzones). When
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Figure 1: High-level overview of RSan’s components.

errorenous memory operations (e.g., a buffer overflow) access
a redzone, RSan aborts the program. RSan introduces a novel
metadata format where it stores object bound information
inside the redzones. To ensure RSan can quickly retrieve the
metadata to perform its checks, it uses two additional prop-
erties. First, the memory allocator uses power-of-two size
classes to guarantee objects start at predictable alignment.
Second, RSan relies on storing some metadata inside pointers
by means of pointer tagging. On modern architectures, RSan
tags pointers explicitly by using the unused (ignored) bits
thanks to Arm’s Top-Byte Ignore and Intel’s Linear Address
Masking. On legacy architectures, where such address mask-
ing features are unavailable, RSan instead performs implicit
tagging, where the tags are encoded inside the pointer.

Workflow Figure 2 further clarifies the overall workflow of
RSan by showing how RSan detects bugs in seven steps. The
figure contains an example C program that performs a mem-
ory allocation of 80 bytes, followed by a memset operation
that sets the first x bytes to zero. It is the task of a bug sanitizer
to confirm that the access range [buf, buf+x] is valid with
respect to the memory object (i.e., not out-of-bounds and not
deallocated). RSan evaluates the validity of this access using
the following paradigm: it performs a metadata lookup on
the lower address (buf) to retrieve the bounds information
of the object, and then compares whether the higher address
(buf+x) exceeds the retrieved upper bound.

In the first step (see Figure 2), RSan pads the object with a
redzone, which, in our example, increases the size by 32 bytes.
In step two, RSan extends the redzone of the object such that
the total size of the object becomes a power of two. This
ensures the object can reside in a power-of-two size class,
a region of memory with objects of the same size. In step
three, RSan stores the upper bound of this allocation in the
underflow redzone (i.e., the overflow redzone of the preceding
object). Then, right before returning the resulting pointer, in
step four, RSan tags the upper bits of the pointer with the
binary logarithmic power-of-two size class (7, in this case).

Before the program executes the memset operation, RSan
checks whether the access is valid. To perform this check,

B buf

char *buf = malloc(80);

memset(buf, 0, x);

128 bytes 128 bytes

... ...

Power-of-two allocator with size classes

Insert redzone (+32)

Find pow2 slot (128)

Tag pointer: log2(128)=7

Store bound metadata

Class 64

Class 128

Class 2^N

Class 32
80

80 + 32

80 + 32 + 16
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buf = 0x7.....000

Check
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#3
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Figure 2: Overview of RSan’s workflow.

RSan needs to retrieve the bound metadata for the target
object. It achieves this by first locating the base address of the
object in step five by aligning down the lower address (buf)
using the pointer tag. Afterwards, in step six, RSan retrieves
the bound metadata by reading at the end of the underflow
redzone: address base-8. Finally, RSan confirms the validity
of the access in step seven by comparing whether the higher
address of the access (buf+x) is within the retrieved bound.

RSan’s design comes with multiple benefits that promote
high performance. For instance, RSan does not require dis-
joint metadata (e.g., shadow memory [50]) to track where the
redzones reside, and instead solely relies on in-band metadata.
Note that RSan does not introduce false positive bug detec-
tions as seen in other in-band metadata formats [6, 25]. An-
other crucial aspect is that RSan checks for buffer under- and
overflow, as well as temporal errors, in a range, all with a sin-
gle comparison. In contrast, existing redzone-based sanitizers
need to iteratively scan memory for redzones to validate com-
mon range operations, and existing bounds checkers require
at least two checks: one for underflows, one for overflows,
and even a third if temporal errors are to be considered [46].

4 Design

Central to RSan’s design is the ability to quickly check the
validity of any arbitrary range of memory from a lower to a
higher address. We make the key observation that even regular
load and store accesses are (small) range operations. For in-
stance, a 4-byte load at address p can in fact be represented as
a range check on [p,p+3]. A key requirement of such checks
is that RSan can find the upper bound (i.e., the metadata) of
the object corresponding to any arbitrary pointer, regardless
of where (i.e., what offset) the pointer points to in the object.
RSan solves this challenge by storing the power-of-two size
class in the unused bits of pointers. By knowing the size class,
any pointer can be aligned down (i.e., masked) to its base
address, after which the metadata can be retrieved at base-8
(inside the padding serving as redzone).
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Note that RSan implicitly checks for buffer underflows
as well as for temporal errors with its (upper) bound check.
Buffer underflows are caught as a result of negative out-of-
bound pointers reading the upper bound metadata of a previ-
ous (i.e., lower address) object. Conceptually, a buffer under-
flow of object N can be viewed as a buffer overflow from the
perspective of object N-i (with i>0). RSan detects temporal
memory errors by updating the bound metadata to zero upon
deallocation, causing any future bound validity check on such
an object to fail until (delayed) reallocation. In the following,
we describe the design of RSan’s components in more detail.

4.1 Allocator
RSan relies on a memory allocator using power-of-two size
classes. Size classes are regions of memory where objects of
the same (slot) size are allocated. Since size classes provide a
uniform layout of objects next to each other, if the start of the
size class region is aligned to the slot size, then so are all the
following objects. As a result, for any arbitrary pointer to a
memory object, if we know its size class we can find the base
of that object by aligning the pointer down to the slot size.

Since storing and fetching additional disjoint metadata (e.g.,
in a map) to track base addresses incurs large overhead penal-
ties, RSan instead finds the base of an object purely through
pointer arithmetic. To that end, upon allocation RSan stores
some metadata in the unused upper pointer bits to enable re-
trieving the base. This technique is also referred to as pointer
tagging. Since the number of bits of the tag are constrained
(e.g., 8 bits with Arm Top-Byte Ignore), storing the base as a
complete address embedded within the pointer is infeasible
without breaking the pointer format (as seen with fat point-
ers). Instead, RSan uses object alignment properties to store
an encoded representation of the base in the available bits.

To this end, RSan restricts the size classes to powers of
two, which allows us to encode size classes up to 2ˆ64 in just
six bits by storing the binary logarithm (log2) of the power-
of-two as pointer tag. For the heap, popular allocators such as
TCMalloc, Scudo, and jemalloc already provide size classes,
and can trivially be restricted to power-of-two classes. For the
stack and global memory, we draw from the designs proposed
by recent work [27]. The stack is split into multiple stacks,
each one dedicated to objects of a particular power-of-two
size class. Global variables are moved into global arrays, each
array containing entries for a particular size class.

4.2 Pointer tagging
As mentioned before, a key ingredient of RSan is the ability
to quickly locate the base address (i.e., the start) of memory
objects. RSan achieves this through pointer tagging.

Explicit tagging On modern Arm and Intel CPU architec-
tures, the TBI and LAM features allow for software to use

tagged

41 40 39 38 28 27 26 25 24 23 22 21 20 11 10 9 8 7 6 5 4 3 2 164 ...

2^47 2^412^64 - 1 0

kernel virtual memory uninstrumented user virtual memory

2^47 2^41

log2(32) << 41
5 << 41

0xa0000000000

log2(4 MB) << 41
22 << 41

0x2c0000000000

log2(1 TB) << 41
40 << 41

0x380000000000

... ...

Figure 3: Address space partitioning for implicit pointer tag-
ging on legacy architectures. Starting addresses of three size
classes are depicted: 32 bytes, 4 MB, and 1 TB.

the most significant (unused) bits of pointers. With such an
address masking feature available, the hardware ignores these
bits when accessing memory and tagging pointers becomes
trivial. Upon allocation, RSan computes the pointer tag by
taking the log2 of the power-of-two size class corresponding
to the object. For this purpose, RSan relies on the ctz instruc-
tion (available on both Arm and x86) that counts the number
of trailing zeroes of a value. The pointer tag is then set using
a regular OR binary arithmetic operation, and ultimately the
(explicitly) tagged pointer is returned to the user program.
The address mask of TBI starts at bit 56 (8 bits tag), while
LAM excludes bit 63 and starts at bit 57 (6 bits tag) or bit 48
(15 bits tag) depending on the configuration of the system.

Implicit tagging While AMD has announced an address
masking feature (Upper Address Ignore [3]), it is not yet avail-
able in commodity hardware. Furthermore, Intel only recently
introduced LAM in its latest processors. Hence, for RSan
to support common (legacy) architectures, we rely on im-
plicit pointer tagging, similar, in spirit, to the tagging scheme
adopted by Low-Fat pointers [18]. Specifically, we rearrange
the 48-bit user-space address layout so that all objects of a
particular size class are allocated in a dedicated address range.
As a result, the objects are implicitly tagged with their size
class, based on where they reside in the address space.

More specifically, we interpret bits [46:41] of every user
pointer as implicit pointer tags. Conceptually, these six bits en-
code the power-of-two size class just as with explicit pointer
tagging. However, since the hardware does not ignore these
bits, RSan needs to ensure objects of the corresponding size
class are allocated in the correct address range (such that the
tag matches the class). Figure 3 displays how RSan rearranges
the address space to support implicit pointer tags. The address
space range between 2ˆ41 and 2ˆ47 is partitioned into equal
chunks of 2ˆ41 bytes each. As a result, each class hosts 2 TB
of virtual memory, which is hence also the maximum object
size. No such size limitation exists for explicit tagging. Each
chunk represents the power-of-two size class that corresponds
to the implicit tag bits being set. For instance, the fifth chunk

4



fake
obj

0x1040
+
30

obj1
0x1080
+ 
42

obj2
0x10c0

+
29

...obj3 ...

64 bytes 64 bytes 64 bytes 64 bytes

bound (1)

base (1)
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Figure 4: Redzone and metadata management in RSan. Three
example objects are created with sizes 30, 42, and 29 bytes.
The figure denotes the aligned base addresses and the loca-
tions where bound metadata can be retrieved for each object.

represents the size class of 32 bytes, because when interpret-
ing bit 41 as the least significant bit, the six-bit binary value
is equal to 32. Note that the remaining upper bits [63:47] are
all zero for user pointers. Hence, the implicit pointer tag is
extracted similarly to the address masking variant: a constant
shift operation (ptr >> 41 for implicit tagging).

The uninstrumented virtual memory region is used for any
memory objects or mappings that do not (or cannot) require
sanitization. This includes external libraries and file mappings,
but also provably safe stack allocations. RSan guarantees that
the program does not accidentally map in the implicit tagging
range. Otherwise, accesses to this memory would wrongfully
be interpreted as tagged, and the subsequent spurious meta-
data lookup causes undefined behavior. To this end, at pro-
gram startup RSan moves the regular stack (typically mapped
in the tagged area) into the uninstrumented area. Additionally,
RSan ensures the entire tagged address space portion is re-
served by the allocator, which prevents future uninstrumented
mappings from residing in the tagged area.

4.3 Metadata
Similar to prior solutions [20,25,27,29], RSan repurposes red-
zones to not only serve as spatial guards, but also to contain
in-band metadata. Similarly, RSan only allows the instrumen-
tation to load and store metadata in the redzones, not the
program itself. In contrast to prior solutions, RSan stores the
metadata of the current object in the redzone padding of the
previous object slot, which, as we will explain, is crucial for
the properties we desire for RSan’s sanitizer checks.

Figure 4 depicts RSan’s redzone and metadata layout. Upon
allocation, RSan pads the object with a redzone, whose size
is larger for larger objects. The redzone is then (possibly)
extended for the padded object to fit in a power-of-two size
class slot. RSan stores the bound information (i.e., where the
object ends) right before the start of the object. This location
concerns the underflow redzone, which is the right-hand side
padding inserted by the previous object. The bound metadata
value is equal to the base address plus the originally requested
(nonpadded) object size. The figure shows where the bound
information for each object can be found, e.g., "bound (1)"

fake
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0x105e

-8

obj1 0x10aa obj2 0x10dd

0x1080
base (2)

*(ptr2-40)
=*(0x106d)

align down
0x106d

to SC 64
=0x1040

ptr2
=0x1095

0x10c0
base (3)

0x1040
base (1)

0x1000
base (0)

0x106d > 0x105e
error!

12

34

5

Figure 5: How RSan detects buffer underflows. In this exam-
ple ptr2 initially points to the middle of obj2, after which
it is offset to ptr2-40 (underflow) and dereferenced. RSan
retrieves the upper bound metadata by locating the base ad-
dress, and reports an error due to an out-of-bounds violation.
This example concerns a 1-byte access (i.e., no range offset)

denotes the bound metadata location for object 1 accesses.
There are two reasons why RSan stores its metadata before

objects, instead of after objects. First, computing the location
of the metadata is a cheaper operation when inserted before
the object, because aligning down requires less arithmetic
than aligning up. Second, we experimentally measured that
storing the metadata before the start of the object provides
better memory locality (and therefore less runtime overhead),
especially when considering large objects. We suspect that it
is simply more common for programs to first access the lower
part of memory allocations (e.g., a linear upwards pattern).

Next, there are two design options for how to place the in-
band metadata before objects, i.e., how to insert the redzones.
As mentioned before, RSan stores its per-object metadata in
the redzone padding of the previous object. Since the alloca-
tions reside in a size class, redzones in-between objects can
be shared, and hence from the perspective of a size class slot,
the padding can either be inserted at the start of the slot (i.e.,
in the current slot, before the object), or at the end of the slot
(i.e., in the previous slot, after the object). The crucial benefit
of storing redzones at the end of the slot is that the start of the
object remains aligned with the alignment of the slot. Hence,
as soon as a pointer underflows, aligning down the pointer
results in reading the metadata of the previous object, which
(correctly) triggers an out-of-bounds violation.

In contrast, consider the unwanted consequence of insert-
ing redzones at the start of size class slots. This effectively
moves up the (true) start address of the object within the slot,
meaning the first byte of data no longer starts at the alignment
of the class. In that case, buffer underflows are no longer eas-
ily detectable with a single upper-bound comparison, since a
pointer that goes out-of-bounds below the start of the object
can still point inside the size class slot, and hence is consid-
ered valid for the associated upper bound.

Figure 5 shows how RSan detects out-of-bounds violations
in both directions with a single comparison. To this end, size
classes need to be prefixed with a fake object to host the meta-
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Listing 1 Computing the base address of an object using the
size class pointer tag and two variable shifts.

1 sizeclass_tag = ptr >> 41; // 56 on Arm
2 base = (ptr >> sizeclass_tag) << sizeclass_tag;

Listing 2 Improved computation of the base address of an
object on x86 architectures using the bzhi instruction.

1 sizeclass_tag = ptr >> 41;
2 base = ptr ^ bzhi(ptr, sizeclass_tag);

data of the first real object (see Figure 4 and 5). Additionally,
since RSan also needs to detect underflows on the first (real)
object, a second piece of prefix padding is necessary to store
a metadata bound of size zero for the fake object itself (not
visualized). Since size class slots can grow large, we replace
the prefix for the fake object with a guard page whenever
favorable in terms of memory consumption.

Finally, RSan also detects temporal errors such as use-after-
free and double-free. This is done by setting the bound meta-
data to zero upon object deallocation. As such, when a deal-
located memory object is accessed, the corresponding check
always reports an error, because every address fails the bounds
check when the stored upper bound address is zero. RSan de-
lays the reuse of deallocated memory using a heap quarantine,
as also done in existing redzone-based sanitizers [25, 28, 56].
Note that the necessary metadata update upon deallocation is
minimal in RSan, with only a single store to the base meta-
data. In contrast, existing redzone-based sanitizers invalidate
metadata with a loop that depends on the object size.

4.4 Checks
With all metadata and memory organization set up, RSan can
perform its sanitizer checks with a fixed paradigm: for any
access from address L to H, look up the bound metadata on
the lower address L and compare the bound with the higher
address H. Note that for a one-byte access L and H are identical.

Since programs tend to contain many load and store op-
erations, the speed of the check is essential for the overall
performance. In order for RSan to find the base address of
any arbitrary pointer, we require a fast method to align down
pointers using the size class stored as pointer tag. Thanks to
the alignment properties RSan enforces with its memory allo-
cator, any pointer can be cut down to its base address using the
pointer tag and two variable shifts. Listing 1 shows how two
variable shifts effectively mask off the lower bits of a pointer
up to the point of the size class alignment. For example, using
the pointer 0x106d from Figure 5 with size class 64 bytes (tag
6): (0x106d >> 6) << 6 = 0x1040. Note that the pointer
tag (6) is omitted from the pointer in this example.

We conducted some initial performance experiments using
this variable shifting technique, which indicated that the Intel
CPUs we tested (generations 10 up to 14) do not seem to

Listing 3 Complete sanitizer check on [ptr, ptr+offset]:
metadata lookup, bound comparison, and slow-path check.
offset denotes the number of bytes the operation spans (e.g.,
8 for an 8-byte load, or 100 for a memset(ptr, 0, 100)).

1 tag = ptr >> 41; // 56 on Arm
2 base = ptr ^ bzhi(ptr, tag); // varshift on Arm
3 bound = *(base - 8); // load metadata
4 if( ptr + offset > bound ){
5 // untagged memory slow-path check
6 if( tag != 0 ){
7 // error!
8 }
9 }

be optimized for shifting with a variable (i.e., non-constant)
operand. Interestingly, we found that the AMD and Arm plat-
forms do not experience a similar significant slowdown from
variable shifting. To avoid variable shifting becoming a per-
formance bottleneck on Intel CPUs, we explored alternative
methods to implement the base address computation. On x86
architectures, we found a suitable alternative in the bzhi in-
struction (Zero High Bits), which is available in the x86 bit
manipulation instruction set since the Haswell and Excavator
generations in Intel and AMD CPUs, respectively.

The bzhi instruction zeroes out the upper bits of a value
starting with a specified (variable) bit position. Note that this
operation effectively does the opposite of what RSan requires:
RSan needs to zero out the lower bits with a variable bit posi-
tion. Therefore, we combine the bzhi instruction with a XOR
operation to achieve our desired computation. This results in
the improved base address computation displayed in Listing 2.
Note that the binary logarithmic encoding of the size class is
beneficial here, since the pointer tag directly represents the
starting index for bzhi to zero. We find that bzhi with a XOR
performs significantly better on Intel CPUs (nearly halving
the total sanitizer runtime overhead), while on AMD the dif-
ference is more modest (since variable shifting is relatively
fast) but an improvement nonetheless. On Arm—which does
not feature similar instructions—we resort to variable shifting,
which fortunately already provides strong performance.

Aside from performance considerations, RSan needs to
account for the possibility of performing checks on uninstru-
mented memory. Since uninstrumented memory is untagged,
the base computation leaves the pointer intact (i.e., aligning
to pointer tag zero). The metadata lookup then reads whatever
data is stored 8 bytes before the pointer (which RSan ensures
to be always mapped), potentially causing the bounds check
to spuriously fail (i.e., a false positive bug detection). To rule
out false positives, RSan introduces a slow-path check that is
only executed when a bounds violation occurs. The slow-path
check simply evaluates whether the pointer tag is zero, which
indicates uninstrumented memory and can thereby be ignored.
Listing 3 displays the complete algorithm of RSan’s sanitizer
check. After computing the base address of the object (lines 1
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Figure 6: An example range check. The metadata lookup on
address buf retrieves object bound B1. The upper address of
the range (buf+x) is out-of-bounds with respect to B1.

and 2), the bound metadata is read at address base-8 (line 3).
The higher address of the access (i.e., the end of the range) is
then compared with the retrieved bound (line 4).

Summarizing, Figure 6 illustrates how RSan checks a range
of memory. This example concerns an out-of-bounds memset
operation spanning x bytes on a target allocation buf. RSan
retrieves the bound metadata (B1, which points to the end of
buf) by aligning down the lower address of the range (buf).
RSan then compares the upper address of the range (buf+x)
to the retrieved bound and reports an out-of-bounds violation.
Note that within a range there is effectively an unlimited
redzone, since any address that exceeds the retrieved bound
is invalid no matter how many redzones are crossed. We
also highlight that RSan’s range checks are constant-time
operations, unlike traditional loop-based redzone checks [69].

5 Optimizations

With the ability to check ranges of memory, RSan unlocks a
large space of optimizations that are historically inapplicable
to redzone-based sanitizers. Before detailing such optimiza-
tions (Section 5.2 and 5.3) we first describe the generic ones
(Section 5.1) our RSan prototype adopts from prior work.

5.1 Existing optimizations

Aside from optimizations that RSan unlocks with its metadata
format, RSan also includes generic optimizations that were
introduced by ASan-- [69]—note that not all optimizations are
applicable, as some rely on ASan-specific shadow memory.

First, we remove unsatisfiable checks, which means we
omit checks for memory accesses that are statically proven
as safe because both the size of the corresponding object and
the offset of the access are known (e.g., for a static stack
allocation). Next, we remove recurring checks, where we
deduplicate checks on the same memory location if there
exists a check that is guaranteed to precede another. Last, we
optimize neighboring checks. This optimizations considers
three or more memory accesses to the same object, where the
checks for the accesses spatially in the middle are skipped
since the neighboring checks on both sides guarantee validity.

Listing 4 Hoisting a loop invariant check.
1 check(&ptr[x])
2 for(uint i = 0; i < n; i++)
3 ptr[x] = 0; // ptr[x] is loop invariant

Listing 5 Hoisting a loop variant range check.
1 range_check(&ptr+s, &ptr+e)
2 for(uint i = s; i <= e; i++)
3 ptr[i] = 0; // ptr[i] is loop variant

5.2 Loop optimizations

By optimizing sanitizer checks in loops we aim to reduce
runtime overhead by moving computation outside of the loop
as much as possible. Different optimizations are applicable
depending on the characteristics of the memory operation:
accesses can be executed (un)conditionally, and the target
pointer of an access may be loop (in)variant.

We point out that moving checks (or computation through
caching) out of a loop can conflict with use-after-free detec-
tion. Since heap memory can be freed inside a loop, a check
before the loop may suffer from false negatives (i.e., checking
too early), while a check after the loop may report a false
positive (i.e., checking too late). ASan-- [69] addresses this
by avoiding optimizations if loops contain a call of which
an argument is the target pointer (which indicates a potential
deallocation). Similarly, GiantSan [42] includes a post-loop
check for use-after-free to accompany their metadata caching,
because if an object gets freed inside a loop the cached meta-
data does not reflect this. However, it appears GiantSan does
not consider the scenario where a program frees its memory
in a valid manner (i.e., no use-after-free occurs in the loop),
in which case the post-loop check reports a false positive.

We extend upon ASan--’s strategy by being more conser-
vative: we include alias analysis to ensure that a loop does
not execute calls that contain an argument which (possibly)
aliases the target pointer, and otherwise we do not optimize.
Note that there can still exist (rare) cases where a called func-
tion loads (an alias to) the pointer from memory and frees it,
and a pre-loop check does not detect a potential use-after-free.

Unconditionally executed accesses We distinguish be-
tween two different cases for memory accesses that execute
unconditionally inside a loop. If we can prove the pointer
is loop invariant, then we hoist the check on that particu-
lar pointer out of the loop. Otherwise, if the pointer is loop
variant, we employ LLVM’s Scalar Evolution (SCEV) loop
analysis to compute the start and end values of the pointer
whenever possible. We then hoist out a check that validates
the complete range the pointer spans throughout the loop.
To determine whether a pointer is loop invariant, we use the
algorithm introduced by ASan-- [69], which is more extensive
than LLVM’s loop invariance API. Unlike ASan--, we do not
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Listing 6 Caching the bound metadata in a local variable for
loop variant conditional accesses. check_ret_meta() is a
regular check that returns the found metadata for reuse.

1 uint64_t bound = 0;
2 for(uint i = 0; i < n; i++){
3 if( cond ){ // conditional
4 if( &ptr[i]+access_size > bound ){
5 bound = check_ret_meta(&ptr[i]);
6 }
7 ptr[i] = 0; // ptr[i] is loop variant
8 }
9 }

move checks for store operations after the loop, since such a
delayed check allows for potential corruption of metadata.

Listing 4 shows a memory access with a loop invariant
pointer, for which RSan hoists out the check out of the loop.
In contrast, Listing 5 shows a loop variant pointer, for which
RSan performs a range check by querying the SCEV API
to obtain the start and end addresses. Note that the start and
end are not always constant, and hence in order for RSan to
find the lower and higher addresses, it queries SCEV for the
minimal and maximal expressions. In practice, if these are
not statically deducible, this results in a runtime comparison
for whichever pointer is greater. The performance benefits
of validating the access for the entire loop in a hoisted range
check significantly outweighs the cost of comparing the start
and end address once to determine which address is greater.

Conditionally executed accesses We also consider memory
accesses inside loops that execute conditionally. For such
cases, it is difficult to hoist out checks, because the access
may never occur or only occur at certain iterations. Instead of
hoisting, RSan caches the results of metadata lookups.

For loop variant pointers, we cache the metadata lookup if
we can guarantee the pointer only increases throughout the
loop. Note that if the pointer decreases, metadata caching is
not possible, since detecting underflows depends on metadata
lookups on a previous object (as discussed in Section 4.3).
Listing 6 shows how RSan caches the metadata in a local
variable the first time that the memory access executes. Essen-
tially, RSan emits a quick comparison of the current pointer
with the cached metadata, which is always true at the first
access because the metadata is initialized to zero. RSan then
performs its complete sanitizer check, and stores the retrieved
metadata inside the local variable. Subsequent memory ac-
cesses reuse this cached metadata value, which saves having
to perform the pointer arithmetic of the complete check. In
the uncommon case where the pointer goes out-of-bounds,
the quick comparison (line 4) will evaluate to true, and the
subsequent complete check (line 5) causes a sanitizer error.

We also investigated an optimization for conditional loop
invariant pointers where we cache the result of the check, and

Listing 7 Merging the check for a constant offset range.
1 range_check(&ptr[-10], &ptr[80]);
2 ptr[-10] = 0; ptr[15] = 0; ptr[80] = 0;

another for conditional accesses where the condition itself is
loop invariant, meaning we can hoist the check if we evaluate
all the conditions before the loop. For both cases, we did not
observe performance benefits, which we suspect is due to
the existing loop invariant code motion and loop unswitching
compiler optimizations already handling these cases.

5.3 Range check merging
Aside from loop-based optimizations, RSan also allows for
more generic range-based optimizations. We discuss multiple
conditions that enable two or more checks to be merged into
a single check that spans a larger range. Unlike optimizations
seen in related work [42], RSan does not make assumptions
about GetElementPtr (GEP) [44] base addresses being valid,
because the C standard allows the GEP base to be out-of-
bounds, while the GEP offsets bring the pointer back into
bounds before dereferencing. In order to avoid false positive
bug detections, our optimizations refrain from relying on the
spatial validity of the GEP base address pointer.

Constant offset merging If we find multiple memory ac-
cesses that dereference the same memory object with different
constant offsets, we merge these checks into a larger range
check that spans the smallest (minimum) and largest (max-
imum) offsets. This optimization synergizes well with for
example loop unrolling, where memory accesses in a loop get
duplicated and operate on known constant offsets.

We find memory accesses that operate on the same object
by searching for GEP instructions, and employing LLVM’s
alias analysis on the base of the GEP. Since we do not wish
to merge sanitizer checks for accesses that may never execute,
we use LLVM’s dominance analysis to confirm a memory ac-
cess has to succeed another. We group constant offset memory
accesses by their GEP base address, and select the lowest and
highest GEP offset. Listing 7 shows how we insert a range
check that covers the complete offset range [min, max]. Note
that the check can always be moved up to the first operation,
since all GEP offsets are constant, and all GEP bases must be
aliases, hence no data dependencies exist. To ensure the early
check does not conflict with use-after-free detection, we scan
for calls that may free the pointer (as with loop optimizations).

Negative-positive pairs While constant offsets allow for
convenient merging, variable offsets are more challenging.
If we find two memory accesses that operate on a GEP with
variable offsets (and an aliasing base and dominance proper-
ties), we can only merge the checks if we prove one of the
offsets is smaller than the other. We identify a scenario in

8



Listing 8 Merging the check for a negative and positive pair.
1 int neg = -x; uint pos = x; // proven neg/pos
2 ptr[neg]; // load
3 range_check(&ptr[neg], &ptr[pos]);
4 ptr[pos] = 0; // store

Listing 9 Merging the check for two pointers to the same
object by computing the lower and higher address.

1 int x = ..., y = ...; // both variable
2 ptr[x]; // load
3 if( &ptr+x > &ptr+y )
4 range_check(&ptr[y], &ptr[x]);
5 else
6 range_check(&ptr[x], &ptr[y]);
7 ptr[y] = 0; // store

which it is statically known which variable offset is larger
than the other: if one offset is provably negative, and the other
is provably positive. The SCEV API provides the ability to
deduce whether a GEP offset is provably negative or positive
(or undecided) based on type information, for example. List-
ing 8 shows how RSan merges the checks of a negative and
positive offset pair of accesses. Note that this optimization
only operates on pairs, since the signedness property does not
extend to a third offset. Currently, we only explicitly apply
this optimization on pairs for which the first operation is a
load, such that the check can be delayed to the second opera-
tion, which guarantees temporal validity, the availability of
both pointer operands, and avoids metadata corruption.

Lower-higher pairs For the remaining memory accesses,
we aim to merge checks based on a runtime comparison for
the greatest address. More specifically, for any pair of checks
that operate on the same GEP base and that are guaranteed to
execute together (dominance and post-dominance), we com-
pute the unsigned minimum and maximum between the two
addresses. As shown in Listing 9, we can turn the two checks
into a single range check by knowing which address is greater
than the other. With this transformation, we exchange the
cost of one complete check (including pointer arithmetic and
metadata lookup) with the min-max comparison on line 3.
Like the previous optimization, we only apply this optimiza-
tion on pairs that start with a load, such that the check can be
delayed to the second access. We found an extension towards
merging chains of checks not to be fruitful, likely due to the
pressure imposed by propagating the pointers down to the last
operation to perform multiple address comparisons.

6 Implementation

We implement a prototype of RSan using the LLVM
(16.0.6) LTO compiler framework combined with a modified
TCMalloc (2.15) memory allocator. For size classes on the

stack we use the modified SafeStack design introduced by
previous work [27]. Each size class on the stack is a separate
region that gets allocated using the modified heap allocator.

Implicit tagging In order to implement implicit pointer tag-
ging for legacy architectures, we modify the address space
layout. First, we restrict TCMalloc’s allocator to only allocate
size class regions in the address space area corresponding
to that size class (see Figure 3). This is done by dedicating
a separate freelist of available memory to every size class.
Next, we use a linker script to move global variables into
the memory ranges matching their size class. We enable the
large code model to allow the distance between the program
and the global variables to exceed 4 GB. Finally, we create a
custom dynamic linker to interpose on the true entry point of
the program. By doing so, we can move the original (uninstru-
mented) stack below the implicit tagging space and plug the
implicit tagging space with dummy mappings. This ensures
that all subsequent mappings (e.g., libc, other libraries, calls
to mmap, etc.) do not end up in the implicit tagging space.

7 Evaluation

In this section, we evaluate RSan in terms of its ability to
detect bugs, as well as its overhead. For our experiments, we
use an Intel i9-13900K machine (for implicit tagging) with
Ubuntu 22.04 and 64GB RAM, an Arm-based Macbook M2
Pro (for TBI) with Debian 12 and 16GB RAM, and an Intel
Ultra 9 285K machine (for LAM) with Ubuntu 24.04 and
128GB RAM. By default, we report results of our implicit
tagging design, since the vast majority of existing systems do
not support address masking features yet. We evaluate RSan
with explicit pointer tagging separately in Section 7.4. All
reported overhead numbers are the median of five iterations.

7.1 Security

First, we further detail and evaluate the security guarantees
of RSan in terms of what bugs it detects. For temporal er-
rors, RSan’s detection guarantees are identical to ASan and
fundamentally limited by the size of the heap quarantine to
delay reuse of the memory. For spatial errors, we configure
the padding RSan inserts for redzones to be at least as large
as ASan, but often the effective size of the redzone becomes
larger due to RSan’s power-of-two allocator. Since RSan is a
redzone-based solution, skipping over redzones remains possi-
ble (i.e., a non-linear out-of-bounds access that lands in valid
non-redzone memory). However, our range optimizations do
improve upon this drawback compared to ASan.

For example, consider the invalid memory access on line
5 in Listing 10. This concerns an out-of-bounds access that
ASan does not detect, since the access skips over the redzone.
However, RSan detects this bug thanks to its check merging
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Listing 10 Example bugs RSan detects but ASan does not.
1 char *ptr1 = malloc(16);
2 char *ptr2 = malloc(16); // to land into
3 range_check(&ptr1[10], &ptr1[32]);
4 ptr1[10] = 0; // in bound (valid)
5 ptr1[32] = 0; // skip redzone (invalid)
6

7 check(&ptr1+12); // access offset = 8
8 *(uint64_t*)(ptr1+12); // partial overflow

Description (CWE) Total ASan RSan

Stack buffer overflow (121) 2,885 2,791 2,885
Heap buffer overflow (122) 3,365 3,318 3,365
Buffer underwrite (124) 1,001 907 1,001
Buffer overread (126) 657 563 657
Buffer underread (127) 1,001 907 1,001
Double free (415) 799 799 799
Use-after-free (416) 374 374 374

Table 1: Juliet Test Suite bug detection results.

capabilities, in this case specifically by the constant offset
merging optimization. This property applies to all of RSan’s
range-based optimization (including loops).

Another scenario where RSan provides better detection
guarantees than ASan concerns partial buffer overflows.
Specifically, ASan cannot detect partial buffer overflows un-
less the start address of the access is 8-byte aligned, as a
consequence of its compressed metadata. In contrast, RSan
can detect any partial overflow thanks to its (range) checking
paradigm. For example, the halfway out-of-bounds partial
overflow on line 8 in Listing 10 goes undetected by ASan
(because the 8-byte access is 4-byte aligned), while RSan
detects partial overflows regardless of their alignment.

Next, to showcase RSan’s capabilities to detect bugs, we
use the NIST Juliet Test Suite [36] and real-world CVEs.
Additionally, RSan successfully detects the known bugs in
the SPEC CPU benchmarking suite, as well as a previously
unknown bug: a buffer overflow on argv in 403.gcc. ASan
does not detect this bug because it does not instrument argv—
a non-fundamental limitation.

Juliet Test Suite We select the relevant categories for spatial
and temporal memory errors from the NIST Juliet Test Suite
(v1.3) and exclude test cases that do not (deterministically)
contain a bug. Table 1 shows the results of this experiment.
RSan reports a 100% detection rate of all bugs across all
categories. In comparison, ASan misses some cases. For the
heap buffer overflow category (CWE122), ASan lacks instru-
mentation for wide string operations (e.g., wcscpy), which is
not a fundamental limitation. In the other categories, ASan
misses buffer overflow errors where the out-of-bounds ac-
cess skips over the redzone. In contrast, RSan successfully
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Figure 7: SPEC CPU2006 runtime overhead buildup of RSan.

detects these bugs because the accesses land in uninitialized
memory. Since RSan’s allocator maps its size class regions
with MAP_ANONYMOUS, the corresponding memory gets zero-
initialized. As a result, the metadata lookup in this memory
(after skipping the redzone) reads the bound value zero, which
generates a sanitizer error due to the failed bounds check (any
non-zero address is larger than zero). We point out that ASan
does detect these bugs if we execute the test cases with a
smaller input offset (within the redzone).

CVEs To confirm RSan also detects real-world bugs, we
use the same CVEs evaluated in recent work [25, 67, 69]. We
execute all the relevant programs, however one test case is not
reproducible on our machine due to legacy code clashing with
a modern compiler and execution environment. Table 4 (in the
Appendix) shows the results of this experiment. Both RSan
and ASan successfully detect all the 16 evaluated CVEs.

7.2 Performance overhead buildup

On the SPEC CPU2006 benchmarking suite, RSan incurs a
geomean runtime overhead of 51% compared to an unmod-
ified LLVM and TCMalloc baseline. To better understand
what this overhead consists of, we measured the slowdown
of RSan’s key components separately. Figure 7 displays the
overhead buildup of RSan for each SPEC CPU2006 program.

RSan’s memory allocator contributes 5 percentage points
(5pp) of the total geomean runtime overhead, consisting of
roughly 1pp from the power-of-two heap allocator (including
implicit pointer tagging), 3pp from the redzone padding and
setting the metadata, 1pp from splitting the stack into size
classes, and no measurable slowdown from moving global
variables into size classes. The remaining two components
have a larger impact: 35pp from the sanitizer checks, and an-
other 11pp from the heap quarantine. The heap quarantine in-
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Figure 8: Runtime overhead progression of RSan on SPEC
CPU2006 when enabling optimizations one-by-one.

curs a large slowdown on the allocation intensive benchmarks
(e.g., 126pp for 403.gcc). We confirmed that the performance
penalty from the quarantine is caused by memory fragmenta-
tion, and not by any bottleneck in our quarantine data structure
implementation (a simple thread-safe ring buffer).

Optimizations impact Next, we evaluate the performance
benefits of the optimizations introduced in Section 5 on SPEC
CPU2006. Figure 8 shows the cumulative geomean runtime
overhead of RSan where each bar represents an optimization
being enabled. As a starting point, unoptimized RSan incurs
an overhead of 90.1%. This drops to 78.8% by including the
existing ASan-- optimizations. Next, enabling all three loop
optimizations reduces overhead to 58.8%, with the biggest
contributor being the hoisted range checks for unconditionally
executed loop-variant accesses (16.5pp). Finally, the three
check merging optimizations reduce the total overhead by
another 7.8pp, resulting in the final 51% geomean slowdown.

7.3 Comparison against the state of the art
Next, we put RSan’s performance in perspective by compar-
ing it to state of the art sanitizers. We compare RSan with
ASan [56], ASan-- [69], FloatZone [25], and GiantSan [42].
To equalize the performance results, we measure the over-
head of all of the sanitizers compared to a TCMalloc baseline.
We port the mostly allocator-agnostic code of FloatZone to
TCMalloc such that we do not attribute a slower underlying
allocator as sanitizer overhead. Additionally, for an accurate
comparison we also modify FloatZone to use the same mini-
mal scaling redzone sizes as RSan and ASan, and we use Float-
Zone’s extended mode that detects partial overflows (since
RSan does too). ASan-- and GiantSan use ASan’s custom
memory allocator, which completely replaces the underlying
heap allocator, hence using TCMalloc makes no difference.
We disable all additional functionality of ASan that RSan does
not implement (e.g., stack use-after-scope). We ensure that
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Figure 9: Runtime overhead comparison of RSan and the state
of the art sanitizers on SPEC CPU2006 and CPU2017.

all compatible optimizations are enabled (e.g., FloatZone in-
cludes the applicable optimizations from ASan--). As an aside,
we discover a concerning trend in recent related work pertain-
ing evaluation practices, which we detail in Appendix A.2.

Figure 9 displays the geomean runtime overhead of each
sanitizer on the SPEC CPU2006 and CPU2017 (SPECspeed)
benchmarking suites. The results show that RSan provides
the best performance with 51.0% and 44.5% overhead (re-
spectively), being slightly faster than its closest competitor
on CPU2006 (FloatZone), and 10 percentage points faster on
CPU2017 (GiantSan). We point out that the measured over-
head for GiantSan is incomplete, due to limitations in the avail-
able artifact1. Note that the overhead for ASan and ASan-- is
relatively high compared to previous measurements [25, 69]
because we compare to a faster baseline (TCMalloc). More
detailed SPEC CPU results are available in Appendix A.3.

For SPEC CPU2017, we parallelize the four (out of eleven)
SPECspeed benchmarks where OpenMP is available across
all 32 performance (P) and efficiency (E) cores of the i9-
13900K CPU. We observe that FloatZone’s performance is
highly sensitive to which cores it executes on. First, bench-
marking singlethreaded programs on a P-core and OpenMP-
enabled programs on all 32 P- and E-cores results in the 62.6%
geomean runtime overhead displayed in Figure 9. Next, if we
restrict the execution to P-cores only, FloatZone’s overhead
shrinks to 42%, comparable to RSan’s (mixed-cores) over-
head. However, if we restrict FloatZone to E-cores only, the
overhead explodes. For instance, we measured a 27x runtime
overhead for 600.perlbench running on an E-core. Clearly,
FloatZone’s performance is deeply intertwined with the per-
formance of the FPU. In contrast, we observe that restricting
RSan to only P-cores or only E-cores does not drastically

1The GiantSan artifact is closed source and contains a bug that results in
missing memory errors in loops. After reaching out, the authors confirmed the
issue and indicated that the released artifact does not match the one evaluated
in the paper. The authors did not respond to our question whether the artifact
serves at least as a lower bound for the overhead due to the missing checks.
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HWASan ASan ASan-- FZ RSan

(Arm TBI)

Rt ∼131.6% 86.7% 75.4% N/A 54.0%
Mem ∼6% 193% 215% N/A 228%

(Intel LAM)

Rt ∼268.3% 159.1% 143.1% 60.0% 54.0%
Mem ∼4% 187% 188% 159% 207%

Table 2: SPEC CPU2006 runtime and memory overhead com-
parison on CPUs supporting Arm TBI and Intel LAM. RSan
uses explicit tagging. FloatZone (FZ) does not support Arm.

affect performance. For instance, on 600.perlbench RSan in-
curs a 1.8x overhead on a P-core, and 2.0x overhead on an
E-core. For context, ASan incurs a 2.64x and 3.26x overhead
on 600.perlbench on a P- and E-core, respectively. In sum-
mary, from this experiment we conclude that RSan provides
the best performance while also being a generic solution.

Regarding memory consumption, the memory overhead of
each sanitizer is dominated by the impact of the heap quaran-
tine. RSan incurs a memory overhead of 239% in total and
78% when the quarantine is disabled. This overhead is slightly
elevated compared to GiantSan (203%), ASan(--) (190%),
and FloatZone (172%). The increased memory footprint is
a consequence of the address space restrictions for implicit
tagging, and the padding RSan inserts for power-of-two allo-
cations. We point out that the power-of-two padding increases
the effective size of the redzones (beyond ASan’s redzone
sizes), which can be beneficial for detecting non-linear buffer
overflows [28]. Note that increasing the redzone size (e.g., to
match the size class requirements or even beyond the current
configuration) does not incur extra metadata overhead.

7.4 Address masking
In this section, we evaluate the performance of RSan in com-
bination with address masking (Arm TBI and Intel LAM),
which showcases the benefits of explicit pointer tagging. Ta-
ble 2 displays the geomean runtime and memory overhead of
RSan compared to HWASan [57], ASan, ASan--, and Float-
Zone on the SPEC CPU2006 suite. We omit GiantSan due to
the limitations of its artifact (see footnote1). The geomean val-
ues for HWASan concern a partial result because (this version
of) HWASan causes the 453.povray benchmark to crash.

First, we observe that ASan-style instrumentation (includ-
ing HWASan) experiences a large slowdown on our last-
generation Intel CPU. For reference, ASan introduces 95.1%
overhead on the slightly older i9-13900K (Figure 9). The
overhead increases to 159.1% on the latest Ultra 9 285K. We
disclosed this behavior to Intel, which they reproduced and
are currently investigating. In contrast, RSan’s performance
is unaffected and stable across the different architectures.

Additionally, we measured that HWASan, a hardware-
assisted ASan variant which uses address masking to tag point-
ers, incurs a large runtime overhead of 131.6% and 268.3%,
even though we configured HWASan in the most favorable
way (e.g., inlining the checks). We find that RSan’s runtime
outperforms the other sanitizers by a significant margin, with
54.0% runtime overhead on both Arm and Intel being 21 per-
centage points faster than ASan-- with 75.4% overhead on
Arm. Moreover, RSan is nearly three times as fast as ASan on
our last-generation Intel CPU. Compared to the 60.0% over-
head of FloatZone, RSan is 6 percentage points faster, while
RSan does not introduce any false positives. Additionally,
RSan’s runtime overhead is slightly higher compared to the
implicit tagging design (51.0%), which can be attributed to
explicitly assigning tags to allocation pointers (OR operation).

Next, we show that explicit pointer tagging through address
masking features improves the memory overhead of RSan. Al-
though the heap quarantine somewhat conceals these benefits,
the memory overhead of RSan without its quarantine is 42%
on both architectures, which is significantly lower than the
78% measured with the implicit tagging design (Section 7.3).
Note that the memory overhead in general can vary across
architectures, for example due to the M2’s 16 KB page size.
We also observe that the heap quarantine imposes a lower run-
time penalty on the Arm platform: 5.1pp on Arm compared
to 11pp on x86 (both with implicit and explicit tagging).

Overall, RSan incurs a memory overhead of 228% on Arm
and 207% on Intel, not far from ASan--’s 215% and 188%
memory overhead, which shows that address masking fea-
tures successfully reduce the memory overhead gap between
RSan and ASan. FloatZone’s memory overhead is slightly
lower, at 159%. Furthermore, we measure that the (partial
geomean) memory overhead of HWASan is minimal with 6%
and 4%. A low memory footprint is one of HWASan’s key
features [11], which is a logical consequence of its memory
tagging approach, as opposed to using redzones. We do point
out that the missing benchmark (453.povray) is a heavy con-
tributor to the overhead of the other sanitizers (roughly 19x
memory overhead for both RSan and ASan).

7.5 Fuzzing

For the final part of RSan’s performance evaluation, we com-
pare the fuzzing throughput and coverage of AFL++ (v4.21c)
using RSan and its closest functional competitors (FloatZone,
and ASan--) as sanitizers. Since sanitizers naturally rely on
the availability of source code, we configure AFL++ to use
persistent mode rather than (the more binary-targeted) fork
mode. This is also to evaluate the mode used in all profes-
sional fuzzing, as stated in the AFL++ documentation [1]. We
fuzz the same programs as evaluated in previous work [25,69]
for 10 iterations of 24 hours each (on P-cores). Since the
three sanitizers apply different instrumentation to the target
programs, we cannot directly compare the resulting edge cov-
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Benchmark Throughput increase Coverage Increase

ASan-- FloatZone ASan-- FloatZone

file 70.1% 2.1% † 0.1% † 12.2%
libpng 24.9% 42.2% 0.1% † 2.2%
tcpdump 13.9% 13.1% - -
cxxfilt 27.1% † -14.9% † 0.6% † 4.3%
nm 32.1% 67.6% 1.0% † 2.8%
size 6.6% † 32.5% 0.2% † 1.0%
objdump -30.8% † -14.3% † -0.3% † 0.6% †

geomean 33.7% 37.5% † 4.4%

Table 3: RSan’s increase in total executions and edge coverage
for persistent mode fuzzing. Statistically insignificant results
(Mann–Whitney U test p-value > 0.05) are marked with †.
Geomean results include statistically significant values only.

erage [60]. Instead, we re-execute the resulting AFL++ queue
(i.e., the inputs that increase coverage) of each fuzzing iter-
ation through an uninstrumented binary to equalize the cov-
erage metric. Additionally, we confirmed that RSan detects
all the bugs found by ASan-- and vice versa, and that no new
bugs were found by any of the sanitizers.

Table 3 displays the median increase in throughput (total
executions) and (edge) coverage of RSan compared to the
other sanitizers. We observe that RSan increases throughput
by up to 70.1% and 67.7% compared to ASan-- and Float-
Zone, respectively. Moreover, RSan increases throughput by
a geomean of 33.7% and 37.5% (only counting the statisti-
cally significant results). From these results, we conclude that
RSan notably accelerates fuzzing throughput. We observe a
large variance in throughput for the statistically insignificant
results. For example, the highest measured total executions for
cxxfilt is 5x larger than the lowest (with the same sanitizer).

In terms of coverage, after 24 hours, our results show that
RSan does not explore more edges with statistical significance
compared to ASan--, which can be explained by the evalu-
ated set of (small) programs saturating their coverage too
quickly [21, 25]. Nonetheless, after one hour of fuzzing, we
observe a statistically significant median coverage increase
of 2.4% on the file benchmark compared to ASan--. For the
tcpdump benchmark, we were unable to obtain valid cover-
age results by replaying the queue (for all of the sanitizers).
Compared to FloatZone, we observe a geomean increase of
4.4% in final coverage. Note that FloatZone suffers from false
positive bug detections that block AFL++ from exploring new
paths, as for example highlighted by the file program [25].
Overall, we found that, while RSan tends to discover edges
more quickly early on, the coverage of the evaluated programs
is saturated after 24 hours.

To confirm our intuition that the evaluated programs are
relatively small and hence saturate quickly (especially with
the high throughput of persistent mode fuzzing), we also con-
sidered a larger program from the Magma benchmarking
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Figure 10: Median coverage progression (with 95% confi-
dence intervals) over 24 hours of fuzzing libxml2 (10 runs).
The red dotted line marks the peak coverage increase (5.8%).

suite [31]. In particular, we selected libxml2 for its large code
size and high “stability” metric according to AFL++ (and thus
low noise). For this program, RSan increases throughput by
33% compared to ASan-- (statistically significant). Figure 10
shows the resulting edge coverage progression of fuzzing
libxml2 with RSan and ASan-- as sanitizers. After 24 hours,
we measured a statistically significant coverage increase of
0.7% for RSan. Additionally, we measured a statistically sig-
nificant peak coverage increase of 5.8% after approximately
one hour of fuzzing. Compared to FloatZone, for libxml2
there is no statistically significant difference in throughput nor
coverage. These results show that the increased throughput of
RSan results in more coverage if the program does not satu-
rate too quickly. Moreover, in line with with prior work, our
results show that exploring new (undiscovered) code requires
exponentially more throughput [7].

In summary, our performance and security evaluation
shows that RSan is effective at detecting bugs and provides
better performance than state-of-the-art sanitizers, for fuzzing
as well as on the SPEC CPU benchmarks. We also highlight
that RSan is a generic solution that supports both Arm and
x86 architectures, performing well even on low-end CPUs.

8 Limitations

Aside from the well-known drawbacks of (redzone-based)
sanitizers, like not detecting intra-object overflows, and con-
flicts with custom memory allocators, RSan also introduces
some technical limitations. First, RSan’s relies on LLVM’s
SafeStack for its size classes on the stack, which currently
does not support instrumenting dynamic libraries [12]. Sec-
ond, RSan’s metadata lookup on base-8 causes segmentation
faults on uninstrumented memory if base-8 is unmapped.
This can only occur if base resides in the first seven bytes of
a page with a preceding unmapped page. We address this lim-
itation by inserting a MAP_NORESERVE accessible page before
every mapping (where needed). Third, RSan’s pointer tagging
can clash with programs that implement their own pointer tag-
ging. None of these limitations are fundamental, but they do
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require engineering effort to address. Finally, RSan does not
yet take full advantage of its large redzones and the pointer
bits provided by Intel LAM [32], both of which may help
further reduce the overhead (see Appendix A.1 for details).

9 Related work

There exist many different solutions for detecting and mitigat-
ing memory errors. There are systems that specifically target
spatial memory errors [2,18,19,24,27,29,37,47] or temporal
errors [10, 15, 26, 48, 61]. Despite many dedicated optimiza-
tions [33, 39, 42, 62, 63, 67, 69], solutions that detect both bug
categories [8,28,51,56] remain expensive in terms of runtime
overhead or require special hardware features [40, 70]. Addi-
tionally, joining two methods for combined spatial and tempo-
ral memory error detection results in high overhead [46, 68].
Existing solutions also sometimes improve performance at
the cost of detecting false-positive errors [18, 25, 52].

Multiple components of RSan are similar to or shared with
concepts seen in related work. First, redzones have been em-
ployed by various sanitizers [25,29,56], and similarly to RSan,
RedFat [20] also stores metadata directly inside the redzone
padding. However, RedFat requires additional memory loads
to locate the metadata and for its checks either requires multi-
ple comparisons (e.g., one for the lower and one for the upper
bound), or a single comparison with extensive arithmetic to
represent the lower bound with an integer underflow. In con-
trast, RSan retrieves the metadata location solely with quick
pointer arithmetic thanks to the alignment properties of its
allocator and checks for validity with a single comparison.
Second, RSan stores per-object metadata in-between objects,
which is a common idiom seen in memory allocators, for
example the inline chunk headers in GNU’s allocator. GNU’s
inline metadata can in turn become a small redzone if memory
tagging hardware features (e.g., Arm MTE) are available [22].

Furthermore, RSan’s implicit pointer tagging design is in-
spired by Low-Fat’s [18] partitioning of the virtual address
space. Similarly, Low-Fat splits the address space into fixed
regions to service allocations of a specific size range. In Low-
Fat, the region index (i.e., the pointer tag) is used as key in a
metadata table, requiring an integer division and a memory
load from the lookup table to find the actual slot size corre-
sponding to a pointer. RSan improves upon this strategy by
directly encoding the size class in the pointer tag, eliminating
the need for expensive memory accesses or divisions.

Additionally, RSan uses the design introduced by Stick-
yTags [27] to split the stack and global variables into size
classes. Both RSan and StickyTags use size classes to guaran-
tee a predictable layout of memory objects. StickyTags uses
Arm’s Memory Tagging Extension (MTE) to protect against
spatial memory errors and the size classes help with reduc-
ing the cost of tagging memory. In contrast, RSan uses size
classes to track and manage its own metadata. The pointer
tags in StickyTags represent one of the 16 possible MTE

colors, while RSan uses pointer tags to encode size classes.
Similarly to BaggyBounds [2], RSan uses power-of-two align-
ment properties to calculate base addresses. However, unlike
RSan, BaggyBounds’ bounds check does not detect temporal
errors and out-of-bounds accesses inside padding bytes.

Finally, RSan was in part inspired by GiantSan [42]. Gi-
antSan aims to improve redzone-based sanitization by in-
creasing the protection density of a single metadata unit in
ASan [56]. More specifically, GiantSan reduces the number
of required metadata lookups and checks by folding multiple
consecutive chunks of valid (shadow) memory into larger
segments. As a result, GiantSan accelerates sanitizer checks
for ranges of memory by scanning for validity iterating one
segment at a time. In contrast, RSan introduces a stronger
range check and validates complete ranges of memory with a
single metadata lookup and comparison, without any loops.

10 Conclusion

After decades of research on detecting memory errors,
redzone-based sanitizers like AddressSanitizer have thrived
and became indispensable for security testing. When transi-
tioning from per-pointer metadata (in bounds checkers) to
per-object metadata, sanitizers lost the ability of checking
ranges of memory for validity in one go. In this paper, we
show that with a novel metadata and check format, we can
reintroduce the ability to perform range checks to redzone-
based sanitizers. The resulting sanitizer design, called RSan,
detects spatial and temporal memory errors with high per-
formance. With its range checking paradigm, RSan enables
a vast space of optimizations and our evaluation shows that
RSan detects bugs with a geomean runtime overhead of 44%
on SPEC CPU2017, faster than all state-of-the-art sanitizers.
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A Appendix

A.1 Future work
Currently, RSan encodes size classes as binary logarithmic
powers of two inside the pointer tags due to the limited 8-bits
of space from Arm TBI. In future work, we aim to explore the
benefits of the larger address mask of Intel LAM. For instance,
with LAM providing a 15 bits tag space, we could support
size classes up to 2ˆ15 (32kB) in the pointer tag without any
encoding. This could remove the powers-of-two requirement
from RSan’s allocator and improve memory overhead.
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Another strategy to reduce memory overhead when address
masking is available is to host smaller sized objects in the
redzone space of larger size classes. This can take effect on
a sub-page granularity, e.g., when an object of 2,048 bytes
leaves 4,096− 2,048− 8 = 2,040 redzone bytes available
to host smaller objects. However, we can also save memory
across pages if we reuse the virtual address space of redzones
in large size classes for new regions, which in turn improves
address space locality and reduces the number of required
page table pages.

Furthermore, we believe the optimization space for RSan is
not exhausted. While this paper covers the core optimizations,
more exotic optimizations are possible, such as: interproce-
dural check merging, interplay between optimizations (e.g.,
caching the metadata of merged checks), and reusing metadata
across non-loop accesses. Additionally, certain analyses of
LLVM can also be extended, such as: a less constrained alias
analysis that finds pointers to the same object, and the FIXME
in LLVM’s API that finds conditional loop accesses [43].

A.2 Evaluation practices
We observed a concerning trend in recent related work
pertaining evaluation practices. Specifically, we found
that some recent papers miscalculate geometric means
(geomeans), omit benchmarks, and use training workloads.

"Like zero, it is impossible to calculate Geometric
Mean with negative numbers. [...] Incidentally, if you
do not have a negative percent value in a data set, you
should still convert the percent values to the decimal
equivalent multiplier. It is important to recognize
that when dealing with percents, the geometric mean
of percent values does not equal the geometric mean
of the decimal multiplier equivalents." [13]

CAMP [41] reports a geomean of percentages for its run-
time overhead, which becomes significantly higher when (cor-
rectly [13]) recalculated with decimal multipliers. However,
CAMP does calculate its memory overhead correctly, as one
zero value makes a geomean of percentages impossible. We
recalculated their reported 21.3% SPECspeed 2017 runtime
overhead as 48.6% using the numbers from the paper. For
SPEC CPU2006, the reported 54.9% becomes 76.1%, exclud-
ing the 447.dealII and 471.omnetpp benchmarks. The authors
state that these benchmarks are omitted due to incompatibility
with competing systems. We believe all results should be re-
ported regardless of what the (current) competition supports.

ShadowBound [66] reports a geomean runtime overhead of
percentages on SPEC CPU2006. When recalculating the ge-
omean using multipliers, we found an overhead of 20.1% com-
pared to the reported 10.6%. Since the exact overhead (or run-
time) values are not reported, we had to estimate them from
the bar plot. The geomean excludes 401.bzip2 and 471.om-
netpp because LLVM 15 reportedly fails to compile these

CVE Type ASan RSan

CVE-2009-1759 stack-buffer-overflow ✓ ✓
CVE-2009-2285 heap-buffer-overflow ✓ ✓
CVE-2013-4243 heap-buffer-overflow ✓ ✓
CVE-2015-8668 heap-buffer-overflow ✓ ✓
CVE-2017-12858 heap-use-after-free ✓ ✓
CVE-2015-9101 heap-buffer-overflow ✓ ✓
CVE-2016-10095 stack-buffer-overflow ✓ ✓
CVE-2016-10270 heap-buffer-overflow ✓ ✓
CVE-2016-10269 heap-buffer-overflow ✓ ✓
CVE-2017-5976 heap-buffer-overflow ✓ ✓
CVE-2017-5977 heap-buffer-overflow ✓ ✓
CVE-2017-7263 heap-buffer-overflow ✓ ✓
CVE-2017-12937 heap-buffer-overflow ✓ ✓
CVE-2017-14407 stack-buffer-overflow ✓ ✓
CVE-2017-14408 stack-buffer-overflow ✓ ✓
CVE-2017-14409 global-buffer-overflow ✓ ✓

Table 4: CVE detection results of ASan and RSan.

benchmarks due the programs being too dated. We found no
such issues with LLVM 16 in our evaluation.

GiantSan [42] reports a geomean of percentages and also
takes the geomean of SPECspeed 2017 and SPECrate 2017
combined as a whole. Additionally, GiantSan reports normal-
ized percentage representations (presumably to avoid negative
and zero values), where for example a runtime increase from
358 to 718 seconds becomes a change of 200%, while we
would call this a 2.0x decimal multiplier and a 100% increase.
The recalculated geomean (using the numbers from the paper)
is favorable to GiantSan: GiantSan’s 146% runtime overhead
(actually 46%) becomes 39.4%. However, we found a large
discrepancy with these results in our evaluation.

ASan-- [69] omits 471.omnetpp from their SPEC CPU2006
evaluation because their solution fails to compile this program.
ASan-- also only includes 5 out of 11 SPECspeed 2017 bench-
marks due to compiler compatibility issues. Since unmodified
ASan [56] supports SPEC CPU without issues, we believe
that follow-up compiler optimizations should not introduce
breakage—unless any limitations (e.g., nonconservative opti-
mization behavior) are adequately documented.

PACMem [40] reports a subset of SPECspeed 2017 (8 out
of 11 benchmarks, specifically only the C programs, omit-
ting C++) and unexpectedly also includes runtime overhead
on Nginx in the geomean. Excluding Nginx shifts the par-
tial geomean from 68.7% (as reported) to 77.5%. PACMem
also uses the SPEC CPU training workload (i.e., input) for
four benchmarks because their competition cannot run with
the reference workload. We believe the reference workload
overhead should still be reported for the PACMem design,
regardless of what the competition supports.

The dissimilarity (miscalculated geomeans, missing bench-
marks, training workloads) between SPEC CPU results across
different (but closely related) papers causes the aggregate
overheads to no longer be directly comparable, an alarming
trend that, if not reversed, may hinder progress in the area.
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A.3 SPEC CPU results
Table 5 displays the impact of the compiler-based optimiza-
tions on SPEC CPU2006 for each individual benchmark.
Table 6, 7 and 8 contain the SPEC CPU2006 and SPEC-
speed2017 runtime overhead results of RSan and related solu-
tions for each individual benchmark.

(x86, implicit) None Ex LVU LIU LVC MC MNP MLH

400.perlbench 2.49 2.01 2.01 2.00 2.01 1.94 1.94 1.94
401.bzip2 1.64 1.61 1.59 1.58 1.58 1.57 1.57 1.51
403.gcc 2.76 2.69 2.66 2.65 2.66 2.66 2.66 2.59
429.mcf 1.41 1.38 1.36 1.36 1.35 1.30 1.30 1.29
433.milc 1.17 1.15 1.11 1.11 1.11 1.11 1.10 1.07
444.namd 1.70 1.63 1.50 1.48 1.48 1.41 1.41 1.41
445.gobmk 1.60 1.52 1.50 1.50 1.51 1.48 1.48 1.47
447.dealII 1.74 1.73 1.59 1.52 1.52 1.45 1.44 1.43
450.soplex 1.53 1.52 1.42 1.42 1.42 1.41 1.41 1.38
453.povray 2.51 2.12 2.12 2.12 2.10 1.83 1.83 1.81
456.hmmer 3.13 3.10 1.52 1.50 1.36 1.37 1.36 1.36
458.sjeng 1.79 1.59 1.54 1.54 1.54 1.54 1.54 1.49
462.libquantum 1.29 1.29 1.13 1.13 1.04 1.06 1.06 1.04
464.h264ref 2.46 1.86 1.77 1.77 1.75 1.71 1.69 1.55
470.lbm 1.30 1.30 1.24 1.24 1.24 1.00 1.00 0.99
471.omnetpp 2.54 2.30 2.29 2.27 2.30 2.25 2.25 2.25
473.astar 1.55 1.46 1.46 1.46 1.46 1.46 1.46 1.44
482.sphinx3 2.07 2.07 1.27 1.27 1.27 1.25 1.25 1.25
483.xalancbmk 3.16 3.09 2.89 2.89 2.55 2.53 2.53 2.51

geomean 1.901 1.788 1.623 1.616 1.588 1.540 1.536 1.510

Table 5: Optimizations runtime impact on SPEC CPU2006.

(Arm, TBI) RSan ASan ASan-- HWASan

400.perlbench 1.95 3.34 2.73 3.67
401.bzip2 1.60 1.53 1.44 1.64
403.gcc 1.52 1.92 1.90 5.38
429.mcf 1.39 1.40 1.31 1.67
433.milc 1.24 2.07 1.71 4.52
444.namd 1.41 1.46 1.21 1.62
445.gobmk 1.49 1.57 1.46 1.83
447.dealII 1.50 2.23 2.14 2.37
450.soplex 1.52 1.55 1.49 1.67
453.povray 1.99 2.44 2.53 -
456.hmmer 1.35 2.39 2.09 3.12
458.sjeng 1.47 1.59 1.36 1.99
462.libquantum 1.07 1.37 1.19 2.64
464.h264ref 1.82 2.04 1.88 3.14
470.lbm 1.05 1.33 1.42 1.44
471.omnetpp 2.13 2.40 2.62 1.94
473.astar 1.48 1.44 1.35 1.59
482.sphinx3 1.43 1.60 1.73 2.30
483.xalancbmk 2.54 3.32 3.29 2.44

geomean 1.540 1.867 1.754 2.316

Table 6: Runtime overhead of RSan and other state of the art
solutions on SPEC CPU2006 (explicit tagging, Arm TBI).

(x86, implicit) RSan ASan ASan-- GiantSan FZ

400.perlbench 1.94 4.21 3.90 3.80 1.87
401.bzip2 1.51 1.49 1.46 1.29 1.52
403.gcc 2.59 3.01 2.96 2.68 2.16
429.mcf 1.29 1.29 1.20 1.26 1.25
433.milc 1.07 1.46 1.22 1.59 1.24
444.namd 1.41 1.50 1.45 1.42 1.25
445.gobmk 1.47 1.60 1.51 1.56 1.24
447.dealII 1.43 2.41 2.28 2.72 1.33
450.soplex 1.38 1.54 1.49 1.46 1.36
453.povray 1.81 2.49 2.21 2.81 2.17
456.hmmer 1.36 2.75 2.35 1.39 2.39
458.sjeng 1.49 1.75 1.51 1.46 1.29
462.libquantum 1.04 1.29 1.18 0.99 1.08
464.h264ref 1.55 2.31 1.99 1.65 2.37
470.lbm 0.99 1.21 1.15 1.10 1.03
471.omnetpp 2.25 2.90 2.64 2.49 1.94
473.astar 1.44 1.43 1.38 1.11 1.14
482.sphinx3 1.25 1.68 1.62 1.21 1.34
483.xalancbmk 2.51 3.42 3.35 2.49 2.35

geomean 1.510 1.951 1.808 1.682 1.531

600.perlbench_s 1.79 2.64 2.03 1.96 1.72
602.gcc_s 1.73 2.20 2.25 1.91 1.50
605.mcf_s 1.20 1.43 1.22 1.25 1.17
620.omnetpp_s 2.53 3.57 3.53 3.22 2.00
623.xalancbmk_s 1.86 2.31 2.13 1.91 1.83
625.x264_s 1.48 2.00 1.91 1.45 2.07
631.deepsjeng_s 1.34 1.62 1.47 1.70 1.22
641.leela_s 1.74 1.86 1.76 1.38 1.42
619.lbm_s 1.01 1.00 1.01 1.00 1.07
638.imagick_s 1.10 2.24 1.52 1.07 2.53
644.nab_s 1.07 1.77 1.58 1.44 1.95
657.xz_s 1.15 1.24 1.19 1.25 1.64

geomean 1.445 1.886 1.704 1.548 1.626

Table 7: Runtime overhead of RSan and other state of the art
solutions on SPEC CPU2006 & 2017 (implicit tagging x86).

(x86, LAM) RSan ASan ASan-- HWASan FZ

400.perlbench 2.14 5.52 5.54 10.62 2.38
401.bzip2 1.47 1.96 1.93 3.15 1.59
403.gcc 1.88 4.42 4.35 5.33 2.22
429.mcf 1.45 3.29 2.77 2.15 1.34
433.milc 1.16 2.64 2.20 2.38 1.25
444.namd 1.32 1.36 1.35 3.20 1.31
445.gobmk 1.45 1.62 1.56 3.48 1.26
447.dealII 1.45 3.65 3.42 4.58 1.40
450.soplex 1.38 2.34 2.11 2.53 1.32
453.povray 1.86 2.40 2.17 - 2.42
456.hmmer 1.50 2.45 2.16 8.48 2.36
458.sjeng 1.39 1.61 1.43 3.95 1.31
462.libquantum 1.04 4.58 4.44 1.80 1.04
464.h264ref 1.52 2.13 1.81 5.27 2.23
470.lbm 1.11 2.91 2.86 2.79 1.04
471.omnetpp 2.53 2.93 2.84 2.93 2.13
473.astar 1.41 1.59 1.60 2.33 1.14
482.sphinx3 1.25 1.92 1.94 4.11 1.47
483.xalancbmk 3.21 3.83 3.66 5.34 2.75

geomean 1.540 2.591 2.431 3.683 1.600

Table 8: Runtime overhead of RSan and other state of the art
solutions on SPEC CPU2006 (explicit tagging, Intel LAM).
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