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Abstract
Memory sanitizers are powerful tools to detect spatial and
temporal memory errors, such as buffer overflows and use-
after-frees. Fuzzers and software testers often rely on these
tools to discover the presence of bugs. Sanitizers, however,
incur significant runtime overhead. For example, Address-
Sanitizer (ASan), the most widely used sanitizer, incurs a
slowdown of 2x. The main source of this overhead consists of
the sanitizer checks, which involve at least a memory lookup,
a comparison, and a conditional branch instruction. Applying
these checks to confirm the validity of the memory accesses
in a program can greatly slow down the execution.

We introduce FloatZone, a compiler-based sanitizer to de-
tect spatial and temporal memory errors in C/C++ programs
using lightweight checks that leverage the Floating Point
Unit (FPU). We show that the combined effects of “lookup,
compare, and branch” can be achieved with a single float-
ing point addition that triggers an underflow exception in
the case of a memory violation. This novel method to detect
illegal accesses greatly improves performance by avoiding
the drawbacks of traditional comparisons: it prevents branch
mispredictions, enables higher instruction-level parallelism
due to offloading to the FPU, and also reduces the cache miss
rate due to the lack of shadow memory.

Our evaluation shows that FloatZone significantly outper-
forms existing systems, with just 37% runtime overhead on
SPEC CPU2006 and CPU2017. Moreover, we measure an
average 2.87x increase in fuzzing throughput compared to
the state of the art. Finally, we confirm that FloatZone offers
detection capabilities comparable with ASan on the Juliet test
suite and a collection of OSS-Fuzz bugs.

1 Introduction

Sanitization for memory safety has become a standard tech-
nique for bug discovery in software testing in general and
fuzzing in particular. Driven by the many security incidents
involving memory errors in system software, many bug detec-
tors have been proposed [7,15,17--19,27,36,43,50], with the

most widespread (compiler-based) sanitizer being Address-
Sanitizer (ASan) [39]. By placing “redzones” around memory
allocations and checking for every load and store if they hit the
redzone and are therefore invalid, ASan eliminates contigu-
ous buffer overflows entirely and other spatial memory errors
probabilistically. In addition, it uses memory quarantining to
detect temporal memory errors. Sanitizers are crucial for iden-
tifying potentially exploitable bugs in unsafe languages like
C and C++. Unfortunately, the checks inserted by sanitizers
incur a significant runtime overhead, negatively impacting,
say, the number of executions in a fuzzing campaign.

To reduce the overhead, researchers have proposed to elimi-
nate checks as much possible [29,46,47,49,51], or to optimize
the associated management of metadata [16, 18, 24, 26]. How-
ever, the bulk of the overhead is still caused by the checks
themselves. For instance, a recent analysis attributes approx-
imately 80% of ASan’s overhead to the checks [51]. While
hardware extensions can help bring down the cost [30,41,50],
they are not always available and often the checks and/or as-
sociated metadata management are still expensive. Moreover,
many of the solutions that promise cheap checks limit their
security guarantees to either (specific flavors of) temporal or
spatial memory safety [9, 15, 27], but not both. Since the tech-
niques are often incompatible, merging them to provide both
spatial and temporal memory safety is very expensive [33,50].

In this paper, we optimize the checks for buffer over- and
underflows, such as performed by ASan [39] and similar
redzone-based solutions [6, 18, 51]. Like LBC [18], we use
in-band redzones containing poison values for performance
and, like ReZZan [6], we raise an alarm immediately upon
a load or store to such poisoned areas, as we weed out false
positives in a separate verification stage. Moreover, we ensure
that our solution integrates well with modern quarantining
techniques to provide temporal memory error detection.

The question we ask is: What makes the checks so costly
and what can we do about it? Without hardware support,
checking for a security property consists of a combination
of compare and branch instructions. For instance, on every
load and store ASan looks up the corresponding metadata,
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compares it to see if it is part of a redzone and branches to
exit code that raises an alarm if this is the case. The branch
instruction pollutes the branch predictor and contends with the
application for CPU execution units. In addition, the accesses
to shadow memory add pressure on the caches and TLBs.

The key insight in this paper is that sanitizer checks never
fail in the normal case and should add little overhead except
in the event of a violation of memory safety. In an ideal
world, the sanitizer should use a special, fast instruction that
is branchless, does not contend with the application for CPU
execution units, and checks the validity of memory implic-
itly—raising an exception upon a violation. While modern
CPUs lack such a targetted instruction, we will show that they
do have instructions that approximate exactly this behavior.

In particular, we find that a floating point addition can be
made to generate an exception if it processes redzone data.
We achieve this by configuring a single floating point addition
to result in an underflow exception only if one of the operands
is equal to our redzone poison value. By instrumenting vul-
nerable loads/stores with the addition, we ensure that redzone
accesses raise an alarm. Moreover, the addition is fast and
branchless and executes on an execution unit that is underuti-
lized in most programs. As a result, the solution ensures high
instruction-level parallelism and much better performance
than prior techniques. While we focus primarily on Intel x86,
we also show such benefits generalize to other architectures.

Using the floating point checks, we implement FloatZone,
an ASan-like sanitizer for spatial and temporal memory errors.
We opt for a design that solely relies on in-band redzones to
promote high memory locality. Omitting shadow memory
results in high-performance fuzz testing [6]. The tradeoff for
such performance gains is accepting some false positives,
where accesses to regular program memory cannot be dis-
tinguished from redzones. Nonetheless, in software testing,
dealing with (infrequent) false positives is not problematic,
as bugs can trivially be confirmed during triaging by using an
oracle (e.g., ASan) to provide ground truth.

In our evaluation, we investigate the performance of using
floating point additions to perform branchless comparisons.
Using the SPEC CPU2006 benchmarking suite, we show that
the FPU on commodity hardware grows faster with every
generation and floating point checks are now twice as fast as
the equivalent comparison-and-branch instructions. As a re-
sult, FloatZone reports a geomean runtime overhead on SPEC
CPU2006 and CPU2017 of 36.4% and 37.0% respectively,
which is significantly faster than existing systems. The trade-
off for our fast checks is accepting slightly reduced detection
guarantees, namely FloatZone cannot detect underflows up to
three bytes. Nonetheless, we show that FloatZone provides se-
curity guarantees comparable to ASan on the Juliet test suite,
the Linux Flaw project, and a collection of OSS-Fuzz bugs.
We also evaluate the increase in performance in fuzzing when
using FloatZone as a sanitizer. FloatZone provides an average
increase in throughput of 2.87x compared to ASan-- [51].

Contributions We make the following contributions:

• We introduce a novel method to express a comparison
operation using floating point arithmetic.

• We show that these float checks are significantly faster
than traditional comparisons.

• We present FloatZone: a design to use float checks to
detect both spatial and temporal memory errors.

• We implement a prototype of FloatZone and we evaluate
it against the state of the art sanitizers.

Availability https://github.com/vusec/floatzone

2 Background

2.1 Floating Point Exceptions
The IEEE-754 [1] standard defines five possible exceptions
that can arise from Floating Point (FP) operations: Invalid Op-
eration, Division by Zero, Overflow, Underflow, and Inexact.
All main architectures (Intel [20], AMD [4], and ARM [5]) of-
fer hardware support for synchronous FP exceptions, together
with the possibility to provide user-defined exception han-
dlers. On these architectures, an underflow exception happens
when the result of a FP operation is denormal, i.e., the result
is so small that it cannot be represented in the normal FP
form. Denormals are FP numbers with the smallest possible
exponent (2−126 for single precision), and the mantissa with
an implicit leading zero (the implied leading digit is one for
normal numbers). For example, when subtracting 1.0 ·2−126

from 1.5 · 2−126, the resulting value 0.5 · 2−126 can only be
represented in denormal form since, without the possibility to
use an exponent smaller than 2−126, a leading zero is needed
in the mantissa. If so configured, this results in an exception to
warn about loss of precision caused by the denormal represen-
tation. FP exceptions are disabled by default, but the user can
enable them by setting the corresponding FP Control Register
(e.g., MXCSR on x86-64). For performance reasons [4], x86-
64 architectures do not fully respect the IEEE-754 standard.
They generate underflow exceptions only with flush-to-zero
(FTZ) enabled, zeroing out every underflow result.

2.2 Memory Sanitizers
Memory sanitizers are tools to detect memory violations in
programs developed in unsafe languages such as C and C++.
The introduced memory safety guarantees are usually divided
in two main categories: (i) Temporal safety: all memory ac-
cesses to an object must happen during its lifetime. For ex-
ample, use-after-free and double-free bugs are violations of
temporal safety. (ii) Spatial safety: all memory accesses must
occur within bounds of the referenced object. For example,
heap and stack buffer overflows are violations of spatial safety.
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 char buf[16];
 buf[x]=0;

Source File

 char buf[16];
 insert_redzones(buf);
 check(&buf[x]);
 buf[x]=0;
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Figure 1: Overview of FloatZone’s components and workflow.

A common method to achieve memory safety is through
the use of redzones, where the sanitizer inserts padding be-
tween memory objects. The sanitizer ensures memory ac-
cesses within the redzone fault, thereby detecting spatial
memory errors that do not skip over the redzone. Deallocated
memory can be similarly guarded to detect temporal memory
errors until reallocation. We will use the term redzone in a
broad sense, including deallocated memory. In order to imple-
ment this functionality, sanitizers accompany every memory
access with a runtime check for validity. Note that memory
sanitizers are detection tools, and are generally not suitable
to be used as defense mechanisms against exploitation.

Traditionally, sanitizers rely on shadow memory, which is
a separate memory region that stores redzone metadata of
the application to provide the ground truth on which memory
areas are accessible. The shadow memory has to be managed
upon allocation and deallocation of memory. Alternatively,
sanitizers may use in-band poisoning of redzones. Initializ-
ing redzones with an (uncommon) poison value, they check
loads and stores to see if they access such poisoned areas. Of
course, false positives may arise if the program legitimately
uses the poison value. The sanitizer may weed out false pos-
itives immediately with a slow check (e.g., using shadow
memory [18]), or leave them for later, to be checked in a sep-
arate verification step [6]. Commonly, in both cases temporal
safety is provided by marking heap objects as redzones upon
deallocation, combined with a quarantine that delays re-using
the redzoned memory region for new objects.

3 Overview

FloatZone detects spatial and temporal memory violations by
protecting memory accesses using exception-based runtime
checks. Figure 1 provides an overview of FloatZone’s compo-
nents and workflow. At the core of our sanitizer, there are two
main components: a custom memory allocator to manage red-
zones and quarantine freed memory, and compile-time instru-
mentation to accompany every memory access with a check
to detect redzone accesses. Since the check is performed on
every load and store, speed is of the essence. As shown in Fig-

ure 1, FloatZone introduces a novel method to detect redzone
accesses through highly efficient exception-based checks.

Traditionally, sanitizers perform checks using at least com-
pare and branch instructions, and potentially a shadow mem-
ory lookup. Unfortunately, this method of checking introduces
a significant runtime overhead [51]. Ideally, we avoid this
overhead by using a cheap check instruction that implicitly
checks for redzone accesses and interrupts the program execu-
tion if that is the case, all without branching and or contending
for the same heavily used execution units as the normal code.

While no dedicated check instruction for this purpose ex-
ists in modern architectures, we identify an instruction that
approximates this behavior by generating an exception in the
case of a memory violation. More specifically, we map float-
ing point underflow exceptions to redzone access checks by
carefully selecting the operands of a floating point addition.

4 Checks using Floating Point Exceptions

The structure for a memory safety check of sanitizers gener-
ally follows the same two-step pattern: (i) evaluate whether
the memory location is a redzone (compare), and (ii) diverge
the control flow in case of detecting a violation (branch). This
pattern has been standardized in existing sanitizers, for ex-
ample in ASan [39], which for each load and store operation
performs a comparison on the corresponding shadow mem-
ory, followed by a conditional branch to an error-reporting
function. Unfortunately, this method of checking incurs a run-
time overhead of approximately 2x [39]. Recent work has
highlighted two dominant sources of this overhead. First, per-
forming the check itself constitutes 80% of the overhead [51].
Second, consulting shadow memory results in a significant
increase in the number of page faults [24, 51].

Aside from the known instrumentation costs, sanitizer
checks also introduce microarchitectural penalties: (i) loads
from shadow memory can evict application cache lines and
TLB entries, (ii) frequent comparisons pollute the branch pre-
dictor buffers and can result in branch mispredictions, and
(iii) performance bottlenecks caused by the competition for
execution units (e.g., load, branch, and address generation
units). For instance, in our experiments we observe that sani-
tizer checks significantly increase the branch misprediction
rate, suggesting that crucial predictor entries are being evicted.
Note that sanitizer branches are rarely taken, so their behavior
can be predicted without relying on the branch predictor.

An ideal implementation of a sanitizer check leverages a
cheap instruction to distinguish between valid and invalid
memory, uses an underutilized execution unit, and does not
pollute caches and branch predictor buffers. Although it is
impossible to completely avoid these inherent drawbacks on
commodity hardware, we identify that floating point arith-
metic can closely approximate such an ideal check. The core
idea behind this is that we can map memory safety violations
to floating point exceptions. Exceptions can be seen as con-
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Listing 1 Pseudocode representation of the implicit check as
a result of performing float(y) + float(0x0b8b8b8a).

1 if( y == 0x8b8b8b8b || y == 0x8b8b8b89 ) {
2 goto exception_handler;
3 }

ditional branches that redirect the control flow in the case of
an error. Out of all the available exception types, we find that
floating point exceptions, due to their flexibility, are the most
suitable for expressing invalid memory accesses. By carefully
selecting the operands, we can configure a single floating
point operation to result in an exception only if one of the
operands is equal to a constant value. Hence, we introduce
a sanitizer check of the form: fp_operation(mem[addr],
const_value). This provides the means to express a com-
parison that evaluates whether the value at addr is equal to a
constant value and, if so, raises an exception.

By encapsulating a comparison as a floating point oper-
ation, we gain three major benefits. First, exception-based
checks use a fast implicit branch through the CPU to ver-
ify whether an exception occurred. Second, since floating
point arithmetic never uses branch prediction resources, it pre-
vents pollution of microarchitectural buffers and expensive
branch mispredictions. Although the floating point exception
is slower than taking a branch, this slow path is rarely ex-
ecuted. Third, the checks result in higher instruction-level
parallelism in the common case of programs that underutilize
the floating point unit (FPU).

Operation Details To find the most suitable floating point
arithmetic configuration, we identify that the performance of
the operation is a critical aspect. Hence, we avoid instructions
with low throughput such as divisions, and instead limit our-
selves to additions and subtractions, which are equivalent due
to the sign bit. Next, we require certain constraints on the
pair(s) of values that generate an exception when summed or
subtracted. First, we need to avoid collisions with other num-
bers as much as possible to avoid false positives. In essence,
we look for a fixed value x such that we can find only one (or
few) y value(s) where x+ y generates an exception. Second,
we require that y follows a byte-wise repetitive pattern (e.g.,
0x4a4a4a4a). The aforementioned is a property we require
for memory alignment reasons, which we explain later.

With all these constraints in mind, by searching the
floating point number space in a brute-force manner, we
discover a suitable configuration. Specifically, with x =
5.375081 · 10−32 (x=0x0b8b8b8a), x + y causes an under-
flow exception only with y = −5.3750813 · 10−32 or y =
−5.37508 ·10−32 (y=0x8b8b8b8b or y=0x8b8b8b89). Note
that y=0x8b8b8b8b is a byte-wise repetitive pattern. The spe-
cific combination of numbers that we discover allows us to ex-
press the comparison in Listing 1 by performing float(y) +
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Figure 2: Underflow exception distribution by doing x+ y where x
is fixed (x-axis) and y ∈ 32-bit space of single precision FP num-
bers. In the zoomed subgraph we highlight the repetitive number
0x8b8b8b8b that can underflow with only two possible values.

float(0x0b8b8b8a). Note that the exception is only raised
if y is equal to one of the two known constant values.

To understand why underflows are the most convenient
exception for our goal, we visualize the distribution of un-
derflows in Figure 2. We fix x and try all possible 32-bit y
values. We count the number of underflow exceptions gen-
erated by computing x+ y. We can see that x values close
to 0 are more susceptible to underflow exceptions, while in-
creasing the absolute value of x reduces the frequency of
underflows. This is because an underflow exception happens
only if |x+ y|< 1.0 ·2−126. In other words, the difference be-
tween x and y must be so small that it can only be represented
using the denormal representation. By having large x values,
the floating point precision becomes too little to generate
small results. In the subgraph of Figure 2 we can also see that
there is a sweet spot of values where the number of possible
underflows is very small, and thanks to the large range of
these values we manage to find a number with a repetitive
pattern (0x8b8b8b8b), satisfying all our requirements.

5 Sanitizing Memory Errors

Now that we have a fast means to evaluate if a four-byte mem-
ory location holds 0x8b8b8b8b or 0x8b8b8b89, we describe
how to build a sanitizer for spatial and temporal memory.

Redzones are an effective technique to detect memory er-
rors. Most notably, ASan implements redzones through a 1-to-
8 byte compressed shadow memory, where the shadow bytes
signify whether memory is valid or not. However, recent work
has highlighted that shadow memory significantly degrades
performance [6, 24, 51] through an increase in the number of
page faults, as well as misses in the TLB and caches. To avoid
such overhead, the faster alternative is to mark the redzones
in-band with a special poison value and raise an alarm for
any memory operation that accesses a poisoned address [18].
While false positives occur if a program legitimately uses the
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Figure 3: Verifying memory accesses using floating point additions.

poison value, this situation is rare and a slow-path check using
shadow memory can weed these cases out. More efficient still,
modern variants drop the precise and inline slow-path analy-
sis altogether, because it needlessly slows down the execution
and we can always filter out false positives at a later stage. As
we will see later in this section, we opt for a similar model,
with additional constraints to reduce false positives.

Besides false positives, padding and alignment are addi-
tional challenges for modern in-band redzone solutions [6,42].
Alignment is necessary because even if a pointer does not
point to the start of the poison value, dereferencing it should
still raise an alarm if the access (partially) overlaps with the
redzone. Existing solutions explicitly align the target of the
check to a multiple of the size of the poison value, incurring
even more overhead because of the necessary addition and
modulo operations [6, 42]. With alignment, padding occurs
whenever an object does not end at a boundary that is a multi-
ple of the size of the poison value. Detecting out-of-bounds
accesses to the padding requires even more instrumentation.
For instance, ReZZan [6] requires multiple additions and sub-
tractions and two modulo operations to perform the check.

Adopting a similar design, FloatZone not only removes the
compare-and-branch operations, but also sidesteps these chal-
lenges by carefully choosing a poison value that is insensitive
to alignment and padding. In particular, we place our four-byte
float constant around each memory object, repeating it as nec-
essary, and then instrument all memory accesses with a float
addition. If a memory access operates on our poison value,
the corresponding addition results in an underflow exception.
Figure 3 visualizes the design. By performing the sanitizer
checks directly on the memory address of the target operation,
we avoid the memory locality penalties caused by shadow
memory accesses. To avoid the padding and alignment is-
sues, we employ a repetitive poison pattern (0x8b8b8b8b),
allowing us to read four bytes from the starting point of any
memory access without alignment. This concept is visualized
in Figure 3, where it is clear that any four-byte access within
the redzone results in the same poison pattern being read.

Redzone Configuration When discovering our repetitive
poison value, we noticed that there is one additional colliding

Listing 2 Float check instrumentation. A single vaddss in-
struction is sufficient to fully instrument load and store op-
erations. We must check stores before they are performed to
avoid overwriting redzones, while we check loads afterwards
to improve caching.

1 ;Assume xmm14=0x0b8b8b8a and xmm15 clobber reg
2 mov rax, [load_addr]
3 vaddss xmm15, xmm14, [load_addr] ;Load check
4

5 vaddss xmm15, xmm14, [store_addr] ;Store check
6 mov [store_addr], rax

value: 0x8b8b8b89. Note the last byte is 0x89 rather than
0x8b. While this seems at first to be a drawback, we use the
0x89 byte to our benefit. Specifically, since the 0x89 byte
is stored as the first byte in little endian representation, we
can use it as start marker for our redzone, which helps to
reduce false positives. To clarify, suppose the valid memory in
Figure 3 ends in 0x8b8b instead of 0xcaca, and we perform a
two-byte access to read this value. Our instrumentation inserts
a float addition on the four-byte value starting at the memory
access, which would be 0x8b8b8b8b (first half valid, second
half redzone). Consequently, this valid access would result in
an unwanted exception. However, when we use 0x89 as the
first redzone byte, the pattern is broken: 0x8b8b898b does
not generate an exception. The 0x89 byte ensures that we can
separate objects ending in 0x8b from the start of the redzone.

Instrumentation FloatZone implements the checks by in-
serting just a single instruction, as shown in Listing 2. In par-
ticular, a vaddss instruction after a load and before a store op-
eration is enough the check the validity of the memory access.
The vaddss assembly instruction performs a scalar single-
precision (i.e., 32-bit) floating point addition, and stores the
result in a specified register. This addition implicitly performs
all sanitizer check steps: load the target, compare against the
poison value, and trigger an exception if the access is invalid.
Additionally, floating point additions are a cheap operation: on
x86-64, the CPU can schedule up to two vaddss instructions
per clock cycle [2].

Spatial and Temporal Memory Safety We improve spatial
memory safety by extending (i.e., padding) stack, heap, and
global memory objects with 16-byte underflow and overflow
redzones. Figure 4 visualizes the creation and destruction of
memory objects and their accompanying redzones. We fill the
redzone areas with our poison value, starting with the 0x89
byte marker. The user of these memory objects is unaware of
the presence of the redzones, hence the program is unaffected
unless memory violations occur. Additionally, the underlying
heap allocator may pad the object size to a multiple of 16
(for alignment). In this case, our overflow redzone is enlarged
such that it fills the complete usable size of the object.
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char buf[16]

free(p)

scope_end(buf)

Figure 4: Redzone management on the heap (top) and stack (bottom).

The instrumentation upon destruction of memory objects
is different for the stack and the heap. When a stack object
reaches the end of its lifetime (i.e., goes out of scope), we clear
out the redzone to avoid running into phantom redzone bytes
on the stack at a later time (when new variables are initialized).
On heap object deallocation, we poison the entire object (as
shown in Figure 4) to detect temporal memory errors. To
prevent the heap memory area from being re-initialized by a
later allocation, we introduce a heap quarantine that delays
the actual deallocation of the object. The quarantine follows a
least recently used replacement policy, and starts deallocating
objects when it is full (default 256 MB). We ensure that the
object, including its redzones, is zeroed out upon leaving
the quarantine to avoid phantom redzone bytes on the heap.
Heap quarantines are a common technique to detect temporal
memory errors, as seen in related work [7, 15, 17, 36, 39].

Security Guarantees Due to the four-byte granularity of
our float values, we have to instrument memory accesses with
a four-byte addition, regardless of the original access size. As
a consequence of this design, there are some limitations when
a complete pattern of four bytes cannot be read. Specifically,
with a 16-byte redzone, accesses that are off-by-{13,14,15}
bytes operate on an incomplete pattern. However, if desired,
a larger redzone size can be used to detect further overflows.
Additionally, as visualized in Figure 5, underflows of {1,2,3}
bytes cannot be detected, since the four-byte pattern will be
partially inside the (valid) memory object, and hence not equal
to the poison value. As we will see, our experiments show
that underflows of three or less bytes are not common, and
hence the aforementioned drawback has minimal impact on
our detection capabilities.

Furthermore, partial overflows are an additional case that
requires special attention. This concerns memory accesses
that are partially in-bounds and partially out-of-bounds. Such
overflows can only be detected if we offset the memory oper-
ation by its access size, i.e., a 4-byte load at address x will be
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Figure 5: Visualization of FloatZone(Ext)’s detection capabilities.
Each cell indicates the start of a memory access (i.e., load/store) of
size s. The symbol V denotes a valid (in-bound) memory access, ✓a
true positive out-of-bound, U a false negative underflow, and P a false
negative partial overflow.

checked at x+memsize(x)−1, which in this case equates to
x+3. The additional offset effectively evaluates whether the
last byte of the memory access is within bounds. However,
this optional extension, which we refer to as FloatZoneExt,
comes with the drawback of further reducing underflow de-
tection capabilities. As highlighted in Figure 5, if we perform
a four-byte load (s=4) on an address that is off by -4 bytes
(i.e., an underflow), the resulting shifted check reads the last
underflow redzone byte together with the first three bytes of
the object, meaning no exception is generated.

In our design, so far we have only considered 32-bit floating
point values. However, floating point exceptions can also be
generated with 64-bit and 16-bit (requiring AVX512 on Intel)
numbers. For our use case, we found that 32-bit numbers offer
the best trade-off between bug detection granularity and the
probability of spurious exceptions. To clarify, 64-bit numbers
reduce security guarantees (e.g., missing underflows up to
7 bytes), while 16-bit numbers statistically make unwanted
exceptions more likely.

5.1 False Positives
As mentioned, the main drawback of relying exclusively on
poisoned in-band redzones is the possibility of false positives,
as a program that happens to use our poison value in memory
results in an unwanted exception. FloatZone recovers from
these exceptions if the four-byte poison value is not part of
a complete redzone (i.e., one 0x89 byte followed by at least
15 0x8b bytes). As a result, false positives occur only under
the following conditions: (i) the program contains a complete
redzone (not from our instrumentation), or (ii) the program
contains a memory object that starts with 0x8b8b8b8b. Note
that in the latter case, we are unable to distinguish the memory
object from the redzone before it, since we do not have a
marker to signify the end of a redzone, and hence the redzone
effectively merges with the start of the object.

Recent work [6] shows that using a memory sanitizer with-
out a backend for ground truth (i.e., no shadow memory) can
be accurate and performant. We argue that, in software test-
ing, potentially dealing with false positives is not problematic,
as the test cases can be confirmed using an alternative back-
end or system (e.g., ASan). While alternatives to detect false
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positives exist, such as tree-structured shadow memory [24],
our evaluation shows that false positives are rare enough that
confirming them offline (i.e., asynchronously) is sufficient.

5.2 Exception Handling
Since floating point exceptions are disabled by default, we
enable per-process underflow SIGFPE exceptions at program
startup, together with flush-to-zero (needed on x86). We reg-
ister an exception handler such that the instrumented program
enters our handler on every floating point underflow. Such an
event can arise under two circumstances: our inserted vaddss
instruction underflows, or from any generic floating point
underflow operation present in the target program.

In the case of a SIGFPE caused by our instrumentation, we
have to confirm whether this was a memory violation. To do
so, we first have to recover the faulting address that corre-
sponds to the triggered exception. Unfortunately, the SIGFPE
exception does not come with the faulting address in the ex-
ception context (in contrast to SIGSEGV). However, since our
instrumentation is designed to always be a single vaddss with
a memory operand, we can disassemble the faulting instruc-
tion to recover the location of the memory operand. Once
we obtain the faulting address, we filter out false positives
by scanning for our redzone pattern (e.g., confirm the 0x89
redzone start marker is present).

In the case of entering the exception handler due to a spu-
rious SIGFPE trigger, we restore the execution back to the
point of interruption, since otherwise the program would de-
fault into process termination. For these unwanted exceptions,
we also have to ensure the correct result of the instruction
is applied. Note that simply ignoring the exception is not
sufficient, as the execution would continue by faulting again.
Therefore, we re-execute the faulting instruction ourselves by
temporarily disabling flush-to-zero mode to compute the orig-
inally intended result, and then restore the execution starting
from the next instruction. Thereby we also avoid issues where
flush-to-zero unintentionally changes the output of operations.
For example, flushing a small denominator to zero leads to
an unintended division by zero. Similarly, for false vaddss
exceptions, we simply move the instruction pointer to the next
instruction and continue executing (here, obtaining the result
of the instruction is redundant).

5.3 Optimizations
We reduce the total number of required memory safety checks
by applying the optimizations described in the ASan-- pa-
per [51]. These optimizations filter out memory accesses that
are proven to be safe. We apply all optimizations except those
that assume shadow memory and are therefore not applicable.

First, we successfully integrate the removing recurring
checks optimization. With this optimization, we identify
checks that concern the same memory location and access

size, and hence we can deduplicate them into a single check.
Next, we partially apply the relocating invariant checks in
loops optimization. This optimization recognizes checks in-
side loops that operate on a constant pointer, and hence a
single deduplicated check after the loop is sufficient. How-
ever, we cannot move checks on store operations outside of
loops due to the store potentially overwriting our redzone,
hence we restrict this optimization to loads. Fortunately, we
measure that 80% of the cases where this optimization applies
in SPEC CPU2006 concern load operations.

6 Implementation

We implement a prototype of FloatZone as a compile-time
instrumentation pass in LLVM 14. Additionally, we override
the default heap memory allocation functions to serve as an
overlay allocator. We overload the common mem∗ and str∗
family functions of the C standard library to insert memory
checks. For our exception handler, we use the Intel XED
library [22] to disassemble instructions at runtime.

There are some special cases we need to consider to ensure
our instrumentation functions properly. Most importantly, red-
zones on the stack must be cleaned up after the lifetime of
the associated object. Otherwise, the checks may run into
phantom (i.e., old remnant) redzone bytes, resulting in false
positives. Most of these cases are already described in prior
work [11], such as setjmp/longjmp and (C++) exceptions.

For FloatZone specifically, we have found a problematic
case where the XSAVE and XRSTOR instructions are used for
saving and restoring the processor state on the stack. It is
possible that a complete redzone is saved on the stack due
to still being present in an XMM register. The only observed
occurrence of this behavior is inside the dynamic lookup of
symbols. We addressed this issue by compiling the target
binary with bind-now symbol resolution.

7 Evaluation

In this section, we evaluate both the performance and the se-
curity of FloatZone. We first demonstrate the performance im-
pact of the float check itself, by comparing against traditional
comparison instructions. Then, we evaluate the performance
and accuracy of FloatZone. We measured runtime and mem-
ory consumption overhead using the SPEC CPU2006 and
CPU2017 benchmarking suites. We show the effectiveness
of FloatZone’s security guarantees using the Juliet Test Suite,
the Linux Flaw project, and OSS-Fuzz test cases. We also
evaluated the performance gain in one of the main use cases
for FloatZone, as part of a fuzzing campaign. We ran the ex-
periments on a machine with Ubuntu 22.04, 64 GB RAM, and
an Intel i9-13900K CPU of which we use the 8 performance
cores. All reported overhead numbers are the median of 5
iterations, unless specified otherwise. For SPEC CPU2017,

7



we enable OpenMP where available (using 16 threads).
The FloatZone design can be configured in two different

modes: including or excluding partial overflow detection. In
our experiments, we refer to the main design as FloatZone,
and the extended version including partial overflows as Float-
ZoneExt. As described in Section 5, the FloatZoneExt design
involves offsetting the checks on memory operations by its
access size. This allows for precise partial overflow detection,
at the cost of reduced underflow detection guarantees and
slightly slower checks.

7.1 Float Arithmetic Checks

We investigate the performance difference between a tradi-
tional branch (cmp+je) and a float addition (vaddss) in terms
of multiple metrics: the imposed runtime overhead, the strain
on the branch predictor, the increase in binary code size, and
the effect on the instruction-level parallelism.

First, we measure the runtime overhead of the two different
checking methods. We create two compile-time instrumen-
tation passes that either insert a vaddss or a cmp+je on ev-
ery memory access, and apply this pass to SPEC CPU2006.
Since we are interested in the isolated overhead of the check
itself, neither pass contain a backend (i.e., no shadow mem-
ory, and no exception handler), and additionally neither pass
contains any of the (orthogonal) optimizations mentioned in
Section 5.3. The cmp+je pass compares against (repetitions
of) 0x8b and contains a branch to an effective NOP to intro-
duce minimal overhead in the case of a false positive. For
the cmp+je instructions, we test three different comparison
configurations: 1-byte, 4-byte, and N-byte, where N is equal
to the access size of the corresponding instrumented mem-
ory access. We measure that the N-byte cmp+je performs the
best, and this configuration in fact resembles the design of
LBC [18] ported to 64-bit. This result suggests the N-byte
configuration enjoys the most favorable trade-off between
false-positives and data re-use. To clarify, the 1-byte cmp+je
configuration experiences more false positives due to the
constant small granularity, while the 4-byte cmp+je version
requires reloading data for 1- and 2-byte accesses.

When comparing the N-byte cmp+je pass to the vaddss
pass, we empirically confirm that the total number of inserted
checks is equivalent. Figure 6 shows the performance pro-
gression of both passes across various CPU generations. Each
reported overhead is with respect to the baseline measured on
the respective machine. For the cmp+je instrumentation, we
observe that across all microarchitectures the relative over-
head remains nearly identical at a geomean of 50%. Note
that the absolute speed of the baseline increased significantly:
geomean 42% less overall runtime between Skylake and Rap-
tor Cove. The overhead of the vaddss instrumentation is
significantly lower than the cmp+je counterpart, and newer
architectures widen the gap even further. In the most recent
generation Intel CPU (i9-13900K), the geomean overhead of
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Figure 6: SPEC CPU2006 geomean runtime overhead of vaddss
and cmp+je across CPU generations.

inserting a vaddss is half the relative cost of a cmp+je, and
also 8 percentage points lower than the vaddss pass on the
less recent i7-10700K. These results suggest that the FPU
has become significantly faster in recent Intel generations.
This hypothesis is supported by the fact that on the Golden
Cove microarchitecture, two additional FADD (Fast Add)
units were added to the pipeline [21]. We additionally verified
that the vaddss benefits are not Intel-specific by performing
the same evaluation on an AMD Ryzen 9 5950X with the
Zen 3 microarchitecture and an Apple M1 (Firestorm). We
observe an improvement for both architectures. On AMD we
measure 58.1% overhead for cmp+je and 29.3% for vaddss.
While on the M1, using Arm’s equivalent instructions for the
comparison and floating point addition (fadd), we manage to
reduce the overhead from 54.3% to 42.3%.

Microarchitectural benefits Next, we investigate the im-
pact of the inserted code on the branch misprediction rate.
Note that the memory violation branches are generally never
taken, hence the ideal outcome is that they have minimal in-
fluence on the overall misprediction rate. Using perf [31] as
performance monitor, we collect the number of branch mis-
predictions on SPEC CPU2006. We observe that the cmp+je
pass increases the number of branch mispredictions with a
geomean of 22.2%. In contrast, the vaddss pass results in a
geomean increase of 6.6%. The negative impact of the vaddss
pass is mostly attributed to the libc instrumentation, which
for example requires additional comparisons to check the size
passed to memcpy and similar functions. When excluding the
libc interposition, the rate reduces from 6.6% to 1.5% for the
vaddss pass, while the impact of the cmp+je pass remains
relatively high at 17.8%. The residual 1.5% increase in mis-
predictions originates from benchmarks that are sensitive to
code size changes. In fact, inserting an equivalent number of
NOP instructions to match the vaddss pass causes the same
misprediction effect. From this experiment we conclude that
inserting comparison checks that rarely fail has a notable
negative impact on the branch misprediction rate, while float
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additions, as expected, have a minimal effect.
Additionally, inserting the vaddss instructions increases

the size of the .text region of SPEC CPU2006 binaries by a
geomean of 31.8%, while the cmp+je inflates the code size
by 52.0%. This is a consequence of comparison instructions
requiring a split in basic blocks and the accompanied jumps,
while float additions keep the control flow as-is.

Furthermore, vaddss offers high instruction-level paral-
lelism for multiple reasons: (i) The CPU can freely schedule
our vaddss instructions thanks to the lack of data dependen-
cies (the addition results are never used). (ii) The vaddss
instruction puts less pressure on the CPU reservation stations
by requiring only two micro-operations (AGU and FP) in con-
trast to the three required by cmp+je (AGU, ALU, JMP) [2].
(iii) On x86-64, the CPU is capable of scheduling up to two
vaddss instructions per clock cycle. (iv) The CPU can handle
a high throughput of vaddss thanks to the wide availability
of FPU execution units. In fact, on a modern Intel microarchi-
tecture (e.g., Golden Cove [23]), floating point additions can
be scheduled on a total of six units (2x FP ALU, 2x FMA, and
2x FastADD). In contrast, there are only two execution units
for branch instructions. Lastly, we point out that the vaddss
instruction is not slowed down by micro-code assists, which
we confirm by never observing the FP_ASSIST event.

To conclude, our experiments highlight the benefits of using
a float addition as an alternative for a comparison: lower run-
time overhead, less microarchitectural interference, a smaller
code footprint, and higher instruction-level parallelism.

7.2 Security Evaluation
We compare the detection capabilities of FloatZone and Float-
ZoneExt against ASan through various metrics. We use the
Juliet Test Suite, as seen in previous work [6, 24, 51], to test a
wide range of synthetic bugs. We detect CVEs from the Linux
Flaw project [49, 51] to demonstrate our effectiveness with
realistic bugs. We investigate the impact of our inherent limi-
tations on fuzzing by analyzing OSS-Fuzz [14] test cases. Ad-
ditionally, FloatZone successfully detects bugs that are known
in SPEC, such as a global buffer overflow in 464.h264ref [39],
and a buffer underflow in 602.gcc_s.

Juliet Test Suite We measure FloatZone’s security guaran-
tees using the NIST Juliet Test Suite (v1.3) [25]. This test
suite contains hundreds of test cases to detect memory safety
errors. We select the bug categories that are relevant to spatial
and temporal memory errors, which are the same categories
as reported in the ASan-- paper. We deduplicate the Juliet test
cases to obtain a unique set of bugs, as many programs share
bugs that are functionally identical at runtime.

Table 1 shows that FloatZone provides nearly identical
security guarantees to ASan when evaluated on the Juliet
test suite. For CWE 121 and 122, it misses a partial buffer
overflow that overrides the loop iterator, but FloatZoneExt

Description (CWE) Total ASan FloatZone FloatZoneExt

Stack overflow (121) 72 72 71 72
Heap overflow (122) 78 74 74 75
Buffer underwrite (124) 24 24 24 22
Buffer overread (126) 19 16 19 19
Buffer underread (127) 24 24 23 21
Double free (415) 17 17 17 17
Use-after-free (416) 18 18 18 18

Table 1: Juliet Test Suite results. Overflow implies buffer overflow.

does successfully detect these cases. For CWE 122, Float-
Zone can detect one more heap buffer overflow than ASan,
due to ASan lacking instrumentation for wmemset. CWE 124
shows the drawback of FloatZoneExt offsetting the checks
on underflows, where two off by -4 bytes buffer underflows
are missed, as explained under the security guarantees in Sec-
tion 5. However, these binaries take input from stdin, and the
effectiveness depends on which input is provided. With input
‘-1’, FloatZone and ASan pass, and with ‘-2’ FloatZoneExt
also detects the bug. For CWE 126, FloatZone manages to de-
tect three more cases than ASan, but the impact of these bugs
depends on undefined data on the stack, due to a non-null ter-
minated printf that may or may not cause an overread. For
CWE 127, FloatZone misses an access that is off by -20 bytes
(5 integers underflow), since our redzone is 16 bytes. There
is no preceding guarded stack object of which the overflow
redzone could be hit. Furthermore, FloatZoneExt (potentially)
misses two bugs due to the same input dependency mentioned
before. Finally, all temporal bugs are detected by both sys-
tems. In total, we can see that FloatZone can detect one more
bug, and 98.7% of the bugs that ASan detects.

Linux Flaw project We evaluate FloatZone’s bug detection
capabilities on certain CVEs of the Linux Flaw project [32],
as was also done in the ASan-- and SANRAZOR [49] papers.
We execute all the (relevant) test cases from both papers,
although some were not reproducible on our machine. We
omit some types of bugs that we do not target, such as stack
exhaustion and null pointer dereferences.

Table 2 shows the detection results per test case. There are
two cases where FloatZone fails to detect the bug. First, CVE-
2009-2285, which concerns an off-by-one byte underflow,
which is a known limitation of our design. Second, CVE-
2017-7263, which is off by 1016 bytes on a 4-byte object.
Clearly, our 16-byte overflow redzone is too small to detect
this bug. This shows a limitation of in-band redzones when
there are no subsequent objects with redzones. ASan manages
to detect these wild pointer accesses since they fall into a ‘not
mapped is poison’ area in shadow memory. On the whole, we
detect 16 out of 18 realistic bugs.

OSS-Fuzz To further investigate the impact of the un-
derflow and partial overflow limitations, we test FloatZone
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CVE Type ASan FloatZone

CVE-2006-2362 stack-buffer-overflow ✓ ✓
CVE-2009-1759 stack-buffer-overflow ✓ ✓
CVE-2009-2285 heap-buffer-overflow ✓ ✗
CVE-2013-4243 heap-buffer-overflow ✓ ✓
CVE-2015-8668 heap-buffer-overflow ✓ ✓
CVE-2017-12858 heap-use-after-free ✓ ✓
CVE-2015-9101 heap-buffer-overflow ✓ ✓
CVE-2016-10095 stack-buffer-overflow ✓ ✓
CVE-2016-10270 heap-buffer-overflow ✓ ✓
CVE-2016-10269 heap-buffer-overflow ✓ ✓
CVE-2017-5976 heap-buffer-overflow ✓ ✓
CVE-2017-5977 heap-buffer-overflow ✓ ✓
CVE-2017-7263 heap-buffer-overflow ✓ ✗
CVE-2017-12858 heap-use-after-free ✓ ✓
CVE-2017-12937 heap-buffer-overflow ✓ ✓
CVE-2017-14407 stack-buffer-overflow ✓ ✓
CVE-2017-14408 stack-buffer-overflow ✓ ✓
CVE-2017-14409 global-buffer-overflow ✓ ✓

Table 2: Linux Flaw Project CVE detection by FloatZone and ASan.

against a large collection of heap buffer overflows obtained
from the OSS-Fuzz project [14], with the goal of finding how
many of them are undetectable. We extract a total of 2942 test
cases with heap buffer overflows, and manage to reproduce
480. Unfortunately, many bugs were not reproducible due to
building or versioning issues, since we have to estimate the
target build commit from the bug report date.

We execute the test cases with ASan to establish ground
truth on the reproducibility of the original OSS-Fuzz report.
We obtain the overflow parameters from the ASan bug reports,
after which we match them against the detection capabilities
of the FloatZone design. Additionally, we run AFL’s crash
exploration mode to fuzz the bug for five minutes, where we
attempt to find alternative triggers of the same bug (e.g., a
different faulting offset).

Out of the 480 total bugs, we find that 424 are overflows,
42 are underflows, and 14 crash without reporting the faulting
offset. To evaluate the number of false negatives introduced by
FloatZone, we consider the two relevant cases: detecting par-
tial overflows and detecting underflows. Of the 42 underflows,
22 have a negative offset greater than 3, meaning FloatZone
can detect them. The remaining 20 cases are mostly off-by-
one. When also considering the bug exploration, we found
that two out of the 20 bugs have an alternative trigger that is
detectable. Hence, 18 underflows remain undetected.

Regarding partially out-of-bounds accesses, excluding bugs
that report a non-partial variant in the same run (i.e., recovery
mode continuation) or in the AFL exploration, we find a total
of 6 overflows and 2 underflows. For the 6 partial overflows,
FloatZoneExt can accurately provide detection guarantees,
whereas the partial underflows would require an additional
check altogether. We point out that the partial overflow statis-
tics are limited due to the fact that ASan itself can only detect
partial overflows if the starting address of the fault is 8-byte
aligned due to the shadow memory compression.

In conclusion, the security guarantees experiments show
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Figure 7: SPEC CPU2006 runtime overhead buildup of FloatZone.

that FloatZone can accurately detect bugs, excluding known
limitations. We additionally point out that these limitations
are acceptable, with undetectable underflows being rare.

7.3 Overhead Buildup

Figure 7 displays the runtime overhead of FloatZone on each
individual SPEC CPU2006 binary. On average, FloatZone
results in a geomean runtime overhead of 36.4%. To better
understand the source of the overhead, we measure the impact
of multiple different components separately. More specifi-
cally, we distinguish between the cost of: (1) load/store float
checks, (2) stack redzone initialization and destruction, (3)
heap redzone initialization and destruction, (4) heap object
quarantining, and (5) enabling exceptions (flush-to-zero, han-
dler, etc.). Note that component 2 and 3 constitute spatial bug
detection, while component 4 introduces the temporal aspect.
The overhead of inserting redzones around global variables is
omitted visually, as the runtime penalty is negligible.

From the buildup graph we conclude that most of the over-
head originates from the floating point checks. This overhead
includes the optimizations proposed by ASan--, although we
find that the ones we implement have minimal benefit for our
design (less than one percentage point improvement). The
464.h264ref binary stands out with a relatively large overhead
caused by our checks. We observe that the overhead for this
particular binary is dominated by the checks for libc mem*-
family functions. Currently, we apply the checks to these stan-
dard library calls prior to the function. This can be optimized
by performing the checks inside the function (e.g., merged
into the memcpy loop to avoid looping twice). Furthermore,
we observe that the stack instrumentation is relatively cheap
on all binaries, as well as the heap redzones in general, al-
though some allocation intensive binaries (e.g., 471.omnetpp
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Program Underflow Float Hit False Positive

401.bzip2 0 41703 1
433.milc 0 46 0
444.namd 0 4 0
450.soplex 0 14 0
453.povray 444672 2 0
456.hmmer 2 0 0
464.h264ref 0 313620 858
470.lbm 0 75 0
473.astar 4 12 0
482.sphinx3 3 96 0

602.gcc_s 0 148 0
619.lbm_s 0 166 0
625.x264_s 0 115358837 2233669
631.deepsjeng_s 0 11525 0
638.imagick_s 98234 10371 49
641.leela_s 0 8 2
644.nab_s 0 14 0
657.xz_s 0 76 2

Table 3: Exception handler hits in SPEC CPU2006 and CPU2017.
Binaries with zero hits are omitted.

and 483.xalancbmk) experience noticeable overhead from the
additional operations in the heap allocator.

After the float checks, the heap quarantine is the second
largest factor in the overhead buildup. A quarantine for mem-
ory objects degrades the spatial locality of the program. Addi-
tionally, poisoning the objects upon deallocation has negative
impact on the cache. It is possible to further optimize the quar-
antine, such as reducing cache-miss latency by prefetching the
next-to-be-evicted quarantine entry (as seen in ASan). More-
over, we could use non-temporal stores upon deallocation to
avoid caching freshly poisoned data. Currently, FloatZone’s
overhead on the 623.xalancbmk_s (SPEC CPU 2017) binary
is higher than ASan’s, as a result of the overhead being domi-
nated by our unoptimized quarantine. However, we decided
to stick with a simple design, since optimization techniques
for the quarantine are orthogonal to our contribution.

The last overhead component concerns our handler for float-
ing point exceptions. As shown in the buildup figure, there is
only a noticeable overhead for 453.povray and 464.h264ref,
which accurately correlates to the number of exceptions
shown in Table 3. The table displays how many times and why
the exception handler was entered for each SPEC CPU2006
and CPU2017 binary. Note that binaries with zero hits are
omitted. The Underflow column provides the number of float-
ing point arithmetic underflows unrelated to FloatZone’s in-
strumentation. Next, Float Hit implies a load or store was
performed on 0x8b8b8b8b or 0x8b8b8b89, but it did not con-
cern a redzone. Finally, False Positives are float hits that could
not be distinguished from a redzone. From the number of
exceptions and the corresponding overhead component we
conclude that the exception handler is not a bottleneck.

In total, we experience unavoidable false positives in two

Runtime Memory

SPEC 06 SPEC 17 SPEC 06 SPEC 17
ASan 77.8% 62.0% 237% 139%
ASan-- 65.9% 53.5% 236% 139%
FloatZone 36.4% 37.0% 182% 82%
FloatZoneExt 47.4% 42.9% 182% 82%

Table 4: SPEC CPU geomean overhead comparison summary.
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Figure 8: SPEC CPU2006 and CPU2017 geomean runtime overhead.

SPEC CPU2006 and four SPEC CPU2017 binaries. We ob-
serve that video compression algorithms (464.h264ref and
625.x264_s) frequently operate on our float poison value. We
suspect it is common for our pattern to be contained in im-
age representations, where 15 pixels contain the same value
(0x8b), preceded by a slightly adjusted pixel (0x89). Note
that the difference between 0x8b and 0x89 is only 2. Exclud-
ing these binaries, the false positives are mostly caused by
containing 0x8b8b8b8b in the start of memory objects. The
float constant originates from sources such as randomly gen-
erating an integer (in 641.leela_s). We point out that it is not
difficult to identify these cases as false positives, since they
can be asynchronously confirmed using for example ASan.

Our results show that offloading memory safety checks
to the FPU does not disproportionally affect floating point
benchmarks. In fact, the subset of floating point benchmarks
in SPEC CPU2006 (7 binaries) has a partial geomean runtime
overhead of 24.7%, while the integer subset (11 binaries)
is 43.7%. The integer benchmarks generally concern more
allocation-heavy workloads, and therefore experience more
overhead from the heap instrumentation.

7.4 Comparison against State-of-the-Art

In this section, we evaluate the performance of FloatZone as
a memory sanitizer in terms of runtime and memory over-
head. We measure performance using the SPEC CPU2006
and SPECspeed 2017 benchmarking suites. To put the per-
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formance of FloatZone into better perspective, we compare
the overhead to related state-of-the-art systems. We evaluate
against ASan [39] and ASan-- [51], while we do not include
systems such as ReZZan [6] and FuZZan [24] because their
designs are optimized for very short-lived applications, so they
would be misrepresented by the SPEC CPU benchmarks. In
fact, ReZZan crashes on SPEC CPU2006 due to running out
of memory. For ASan and ASan-- we disable the functionality
that we do not implement, such as use-after-scope detection.
We port ASan-- to LLVM 14 to equalize the baseline.

Figure 8 visualizes the geomean runtime overhead of Float-
Zone and FloatZoneExt (the configuration with memory ac-
cess size offsetting) in comparison to ASan and ASan--. A
complete summary of the SPEC CPU overhead results is
shown in Table 4. In our reproduction of ASan--’s evaluation
we find that it is 15% and 13.7% (11.9 and 8.5 percentage
points) faster than ASan on SPEC CPU2006 and CPU2017,
respectively. In the original paper, ASan-- reports an overhead
reduction of 41.7% (44.5 percentage points) against ASan.

There are some differences in our setup that may explain
this deviation. We do not run ASan(--) in recovery mode, and
instead apply patches to SPEC to fix any present bugs [40],
as is done in the ASan paper. This avoids wrongfully bench-
marking the error reporting component of ASan. Additionally,
for the overhead aggregation we use the geomean, as opposed
to the mean in ASan--. However, taking the mean does not
make the overhead results more favorable. Finally, our num-
bers include the 471.omnetpp SPEC CPU binary, which was
reported to not build in the ASan-- paper.

In comparison, FloatZone’s overhead is less than half of
ASan’s on SPEC CPU2006, and 25 percentage points lower
on SPEC CPU2017. Although ASan-- successfully reduces
the overhead of ASan, FloatZone is significantly faster, with
a runtime overhead of 36.4% and 36.9% on SPEC CPU2006
and CPU2017, respectively. ASan-- reported compatibility
issues with SPEC CPU2017 in their paper, resulting in limited
results. We observe that most of the SPECspeed binaries run
successfully, although 602.gcc_s and 265.x264_s report a
false positive use-after-free. Hence, we run these two binaries
in recovery mode for ASan--, as fixing this bug is not trivial.

Regarding potential FPU overutilization resulting in bot-
tlenecks, for SPEC CPU2017 we observe a similar trend as
for SPEC CPU2006 (discussed in the previous section). The
three floating point binaries experience a geomean runtime
overhead of 11%. Note that all floating point binaries have
OpenMP directives, which is beneficial for distributing the
load across multiple FPUs. For 644.nab_s we observe a severe
slowdown when limiting the execution to a single core, which
we suspect is due to FPU overutilization.

The FloatZoneExt configuration manages to outperform
ASan-- by a significant margin, where the (optional) partial
overflow extension increases the overhead of FloatZone from
36.4% to 47.4% on SPEC CPU2006. For SPEC CPU2017,
the overhead increases from 37.0% to 42.9%. The increased

overhead is fully attributed to the additional pointer arithmetic
required to offset the checks by the memory access size. For a
use case where accurate partial overflow detection is crucial,
this mode can prove beneficial.

Regarding the memory overhead, FloatZone uses notably
less memory, which is a logical consequence from the fact that
we do not employ shadow memory. More specifically, Float-
Zone consumes 55 and 57 percentage points less memory
than ASan on SPEC CPU2006 and CPU2017, respectively.
However, we also note that ASan employs variably sized red-
zones, with a minimum of 12 and 16 bytes for the stack and
heap, where the size of the redzone depends on the allocation
size. Hence, using larger redzones naturally increases memory
consumption. As expected, memory overheads are identical
for FloatZone and FloatZoneExt, as for ASan and ASan--,
since the changes only affect runtime performance.

In conclusion, the benchmarking experiments on SPEC
CPU highlight the benefit of implementing a sanitizer using
our approximation of an ideal memory safety check. While
we showed in Section 7.1 that a vaddss can outperform a
cmp instruction, this section furthermore underlines that the
subsequent sanitizer built from such an alternative checking
method is significantly more performant.

Microarchitectural bottlenecks To investigate the microar-
chitectural differences between ASan and FloatZone, we iden-
tify three performance metrics that highlight the negative im-
pact of inserting comparison-based checks combined with
shadow memory. Using perf [31] as performance monitor
on SPEC CPU2006, we observe that ASan’s instrumentation
increases the number of TLB misses by a geomean of 145%,
while FloatZone only causes a 56% increase. Furthermore,
ASan causes the number of L3 misses to increase by 144%,
while FloatZone causes a 107% increase. The reduction in
TLB and L3 misses shows the benefit of FloatZone using
in-band redzones to improve memory locality.

Additionally, we find that ASan increases the number of
branch mispredictions by 11.3%, and FloatZone does so by
4.9%. This highlights the benefit of branchless checks on the
branch predictor buffer. The remaining increase in branch mis-
predictions by FloatZone is mostly attributed the libc interpo-
sition, and to the binaries that experience many false positive
exceptions (see Table 3), and hence frequently execute XED’s
decoding code. Note that the branch misprediction increase is
lower in ASan than the cmp+je pass in Section 7.1, since the
cmp+je pass experiences more prediction interference from
false positive paths being taken.

7.5 Fuzzing

A common use case of memory sanitizers is fuzz testing
to discover bugs in applications. We evaluate the increase
in throughput and (edge) coverage in fuzzing when using
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Benchmark Total Execution
Increase

Coverage
Increase

ASan-- ReZZan ASan-- ReZZan

file 97.0% 114.8% -7.1% -5.5%
libpng 178.1% 6.0% 0.6% † -2.1% †
tcpdump 434.9% 4.5% 16.6% 0.5% †
cxxfilt 179.7% 25.9% 2.1% 0.2% †
nm 207.0% 116.5% 2.2% 1.2%
size 150.1% 206.1% 4.1% 4.2%
objdump 158.7% 122.7% 4.3% 2.1%

geomean 187.6% 71.8% 3.1% 0.1%

Table 5: Results of the fuzzing evaluation. The numbers concern the
increase in total executions and branch coverage when using Float-
Zone compared to ReZZan and ASan--. Statistically insignificant
results (Mann–Whitney U test p-value > 0.05) are marked with †.

FloatZone as sanitizer compared to ASan-- [51] and ReZ-
Zan [6]. We use the same benchmarks and configuration as
ASan--, and perform 15 fuzzing iterations of 24 hours each.
All reported results are the median of 15 runs. We select
AFL++ [12] 4.05a in fork-mode as our fuzzer, and measure
all results on the same hardware described in Section 7. We
point out that ReZZan does not contain the optimizations men-
tioned in Section 5.3, however in our evaluation we observed
they provide minimal benefit to FloatZone, hence we argue
their omission from ReZZan is insignificant. Additionally, we
fixed a confirmed issue regarding the missing instrumenta-
tion of memset in the ReZZan prototype [38], which would
otherwise result in a misrepresentative overhead comparison.

The results in Table 5 show that FloatZone provides a
considerable increase in the total number of executions in 24
hours: a geomean increase of 187.6% and 71.8% compared to
ASan-- and ReZZan, respectively. As a result of the increase
in throughput, fuzzing with FloatZone improved coverage
up to 16.6% (in tcpdump) and 4.2% (in size) compared to
ASan-- and ReZZan. In the coverage plots in Figure 9 (in
the Appendix) we can observe that fuzzing with FloatZone
usually causes the coverage plateau to be reached quicker than
with the competing sanitizers, although all systems tend to
reach similar total coverage after 24 hours. As pointed out by
related work [13], an increase in throughput is mostly visible
in the coverage graph up until the plateau, while exploring
additional coverage beyond the plateau is not easily achieved
solely by a larger throughput. To clarify, we observe notably
higher relative coverage after 4 hours compared to the 24
hours counterpart. Specifically for nm, objdump, and size,
after 4 hours FloatZone reaches 12%, 13%, and 6% more
coverage than ASan--, and 5%, 6%, and 12% for ReZZan.

During the fuzzing campaign we observed the presence of
some false positive bug detections. To remove these spurious
results we simply provided the same crashing inputs to the
target benchmark, using ASan to confirm or deny the pres-

ence of a (true positive) memory violation. Overall, we never
observed more than 1900 false positives (originating from a
total of 790 million executions) in a 24 hours run. Addition-
ally, we verified that for all buggy benchmarks, FloatZone is
capable of detecting the known true positive crashes.

For two benchmarks (libpng and tcpdump), FloatZone
performs similarly compared to ReZZan. This is attributed to
the fact that forking is a major bottleneck in these benchmarks,
hence the benefits of FloatZone are less apparent. For cover-
age, the only (statistically significant) outlier is file, where
we reach slightly worse final coverage. We verified that by
configuring our sanitizer to never abort, thus avoiding crashes
from false positives, we observe an almost identical coverage
compared to ASan-- and ReZZan. This suggests that for file
a false positive crash prevents AFL++ from exploring new
paths. This issue can be solved by modifying AFL++ to use
ASan as oracle to discard such blocking false positives.

In conclusion, our evaluation shows that FloatZone can
increase fuzzing throughput considerably, reaching the same
coverage while using less time and therefore less power.

8 Discussion

Limitations While we have addressed the accuracy limi-
tations of FloatZone throughout this paper (see Sections 5,
5.1, 7.2, 7.5) here we point out some fundamental drawbacks
of redzone-based sanitizers: limited detection for non-linear
and inter-struct overflows, as well as engineering difficulties
such as having to instrument custom memory allocators (e.g.,
ngx_calloc in Nginx [37]) and recompiling libraries (e.g.,
to instrument the C++ standard library).

Hardware Floating point additions are an approximation of
the ideal checking instruction and have the characteristics of
being fast, branchless, and exception-based. The actual ideal
instruction would execute on a dedicated execution unit to
avoid interfering with the target program as much as possible.
Since FloatZone assumes the FPU is generally underutilized,
our design may not translate well to devices with limited FPU
resources. Moreover, if the hardware can support efficient
shadow memory management, the ideal instruction can avoid
relying on 4-byte poison values, thereby avoiding alignment
issues hampering detection capabilities.

In conclusion, we have shown FloatZone’s floating point
addition to be an efficient approximation of the ideal instruc-
tion on commodity hardware. For instance, the isolated SPEC
CPU2006 geomean overhead of performing checks is 25%
(cf. Figure 6), and the remaining 11.2% overhead is a lower
bound for applying redzones and heap quarantining. Given
the difficulty of finding better approximations on commodity
hardware, future work may investigate hardware extensions to
more closely match the performance of the ideal instruction.
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9 Related Work

Sanitizers aim to detect bugs, such that they can be fixed. For
this reason, we do not discuss related work that focuses on
mitigating bugs.

Sanitizers There exist many different memory sanitizers,
especially when including sanitizers that specifically target a
single bug category. There are systems that only detect spatial
memory errors [3,10,11,18,27,28,34], as well as systems only
detecting temporal bugs [8,9,15,35,44]. Recent work [33,50]
points out that combining two distinct spatial and temporal
safety systems into a joined sanitizer results in high overhead.

In contrast, there exist sanitizers that by design provide both
spatial and temporal detection guarantees, such as ASan [39],
MEDS [17], DrMemory [7], and Memcheck [36]. Excluding
sanitizers that require special hardware features [30, 41, 50],
the existing memory sanitizers still incur a significant runtime
overhead, despite modern optimizations [29, 46, 47, 49, 51].

FloatZone shares a part of its design with prior work. In-
band redzones have been introduced by LBC [18], and have
been re-visited by ReZZan [6]. More specifically, ReZZan
optimized the LBC design by omitting shadow memory at
the cost of requiring more expensive (branch-based) checks
due to padding and alignment issues. FloatZone avoids these
complications by leveraging a byte-wise repetitive poison pat-
tern. Additionally, we demonstrate that we can avoid multiple
microarchitectural penalties by offloading the checks to the
FPU, resulting in a significantly faster comparison. On top
of this, we highlight the benefits of using exception-based
checks, through which we shift the overhead away from the
common path towards the case of a memory violation.

To the best of our knowledge, we are the first to leverage
byte-wise repetitive redzones with a start marker, and floating
point arithmetic to perform exception-based checks. Special-
ized faster sanitizer checks have been proposed before, for
example using the MMU [9, 15, 27], however FloatZone’s
checks express a more generic comparison that can offer both
spatial and temporal bug detection. There is related work
that relies on custom hardware to raise an exception upon
a memory violation [42, 45]. In contrast, in FloatZone the
exceptions themselves determine the validity of accesses. Fi-
nally, heap quarantines are common in temporal safety de-
signs [7, 15, 17, 36, 39], and our implementation is similar.

Fuzzing Recent work introduced memory sanitizers specif-
ically designed for fuzzing: FuZZan [24], and ReZZan [6].
These systems are designed to perform well for short-lived ap-
plications, at the expense of scaling poorly to long-running ex-
ecutions. FuZZan points out that the linear shadow memory of
ASan can be optimized for fuzzing, while ReZZan shows that
in-band redzones can outperform the tree-structured shadow
memory of FuZZan. With FloatZone, we show that by intro-
ducing a fast method of performing checks, we can perform

well both on short-lived (i.e., fuzzing) and long-lived (i.e.,
SPEC benchmarks) applications. Other literature to improve
fuzzing throughput uses snapshots to reduce time spent ex-
ecuting target programs [13, 48]. Like FloatZone, these aim
to relieve a bottleneck in fuzzing, but they are orthogonal as
we specifically target the sanitizer. Both approaches can be
combined to achieve further speedups.

10 Conclusion

Sanitizers for memory safety have become a standard in soft-
ware testing, and despite recent optimizations, state-of-the-art
bug detection tools still incur significant runtime overhead.
We further improve performance by introducing a faster check
for validity on commodity hardware. We show that we can
use floating point arithmetic to express the common compare-
and-branch sanitizer paradigm. We use this primitive to build
a memory sanitizer called FloatZone, that relies on carefully
crafted floating point underflow exceptions to identify mem-
ory violations. We show these checks using floating point ad-
ditions are indeed notably faster than comparison instructions,
thanks to multiple microarchitectural benefits. Moreover, we
show that our resulting sanitizer significantly outperforms the
state-of-the-art in both runtime and memory overhead.
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A FloatZone instrumentation example

We show a small example of what the assembly code gen-
erated by the FloatZone compiler pass looks like. Listing 3
shows a simple function affected by an out-of-bound access,
and Listing 4 shows the function in assembly after adding
instrumentation.

Listing 3 C source code of buggy.
1 char buggy(unsigned int idx) {
2 char buf[16];
3 fill_buffer(buf);
4 return buf[idx];
5 }

Listing 4 Instrumented assembly code (Intel syntax) of
buggy.

1 buggy:
2 push rbx
3 sub rsp,0x30
4 mov ebx,edi
5 lea rdi,[rsp+0x10]
6

7 ;Apply redzones to buf[16]
8 movaps xmm0,XMMWORD PTR [rip+0xe8d] ;898b8b8b8b..
9 movaps XMMWORD PTR [rsp],xmm0 ;Underflow rz

10 movaps XMMWORD PTR [rsp+0x20],xmm0 ;Overflow rz
11

12 ;fill_buffer(buf)
13 call fill_buffer
14

15 ;return buf[idx];
16 mov ecx,ebx
17 mov al,BYTE PTR [rsp+rcx*1+0x10]
18

19 ;FloatZone check
20 movss xmm0,DWORD PTR [rip+0xe45] ;0b8b8b8a
21 vaddss xmm15,xmm0,DWORD PTR [rsp+rcx*1+0x10]
22

23 ;Zero out buf[16] redzones
24 xorps xmm0,xmm0
25 movaps XMMWORD PTR [rsp],xmm0 ;Underflow rz
26 movaps XMMWORD PTR [rsp+0x20],xmm0 ;Overflow rz
27

28 add rsp,0x30
29 pop rbx
30 ret

B Fuzzing evaluation

Table 6 shows the benchmarks setup used in the fuzzing
evaluation, while Figure 9 offers an overall comparison of the
obtained coverage among FloatZone, ReZZan and ASan--.

Benchmark Version AFL++ Command Line

file 1.62 -m magic.mgc @@
libpng 1.6.38 @@
tcpdump 5.0.0 -n -e -r @@
cxxfilt 2.31 -n
nm 2.31 @@
size 2.31 @@
objdump 2.31 -a @@

Table 6: Fuzzing evaluation setup taken from ASan-- [51].

C Exception-based checks search space

Modern CPUs can generate various exceptions, such as page
fault, alignment check and division by zero. However, in our
analysis, we found that very few of them can be used to ex-
press an equality condition. Thanks to the inherent mathemat-
ical properties, Floating Point exceptions offer a good degree
of freedom in selecting the conditions that will trigger this
event. Specifically for addition and subtraction operations,
we demonstrated (cf. Figure 2) how the underflow exception
allows to express equality conditions with a large pool of con-
stants. The remaining exceptions offer less ideal properties:

• Invalid: An SNaN is sufficient to trigger this exception,
and since there are almost 223 SNaN encodings, it is not
suitable to express an equality condition.

• Division by zero: Only possible with the expensive divi-
sion operation.

• Inexact: Not suitable since this exception is almost al-
ways triggered. Operation results are rarely perfectly
represented in floating point format.

• Overflow: There is a sweet-spot of numbers that ex-
perience overflow only with a small count of numbers,
therefore making it a suitable candidate. For example,
the number 0x73000000 will only overflow when added
to 0x7f7fffff (i.e., FLT_MAX). However, overflow is
not ideal to express comparisons due to the low choice
of faulting numbers, since it is always a set contain-
ing FLT_MAX and its closest numbers, i.e. 0x7f7ffffe,
0x7f7ffffd, etc.).

On the other hand, a limitation of underflows regarding the
FloatZone design is that only numbers close to the selected
constant will trigger exceptions. This makes it impossible to
find an equivalent of 0x8b8b8b89 for the underflow redzone
(i.e. 0x898b8b8b) since the most significant byte predomi-
nantly encodes the floating point exponent.
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Benchmark ASan ASan-- FZ FZExt

400.perlbench 3.93 3.50 1.46 1.85
401.bzip2 1.53 1.47 1.29 1.54
403.gcc 2.72 2.68 1.92 2.02
429.mcf 1.30 1.19 1.08 1.23
433.milc 1.13 1.09 1.11 1.17
444.namd 1.55 1.44 1.17 1.21
445.gobmk 1.56 1.46 1.19 1.23
447.dealII 2.14 1.99 1.34 1.42
450.soplex 1.50 1.47 1.22 1.30
453.povray 2.25 1.98 1.65 1.83
456.hmmer 2.30 2.29 1.58 2.32
458.sjeng 1.73 1.45 1.14 1.16
462.libquantum 1.07 1.05 1.02 1.03
464.h264ref 2.35 1.85 2.28 2.35
470.lbm 1.21 1.14 1.02 1.02
471.omnetpp 1.88 1.75 1.61 1.62
473.astar 1.42 1.30 1.18 1.19
482.sphinx3 1.62 1.60 1.32 1.34
483.xalancbmk 2.56 2.56 2.09 2.23

600.perlbench_s 2.17 1.75 1.60 2.06
602.gcc_s 2.02 2.07 1.44 1.48
605.mcf_s 1.20 1.16 1.11 1.17
619.lbm_s 0.97 0.97 0.99 0.99
620.omnetpp_s 2.33 2.24 1.78 1.80
623.xalancbmk_s 1.79 1.76 2.02 2.09
625.x264_s 1.95 1.81 2.10 1.98
631.deepsjeng_s 1.54 1.38 1.19 1.27
638.imagick_s 1.61 1.50 1.25 1.26
641.leela_s 1.68 1.64 1.27 1.28
644.nab_s 1.47 1.39 1.10 1.10
657.xz_s 1.29 1.26 1.12 1.22

Table 7: SPEC CPU runtime overheads. FZ = FloatZone
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Figure 9: Coverage plots of our fuzzing evaluation. The plots show
the median of 15 runs with the corresponding 95% confidence inter-
vals.

18



D Artifact Appendix

D.1 Abstract

In this artifact we provide the means to reproduce our main
results. Specifically, we show that our memory sanitizer, Float-
Zone, can detect memory errors, and that FloatZone’s perfor-
mance is higher than traditional comparison-based solutions.
We have validated the artifact using an Intel i9-13900K CPU
running Ubuntu 22.04 with a stock v5.15 Linux kernel. Our
source code is available at: github.com/vusec/floatzone.

D.2 Description & Requirements

D.2.1 Security, privacy, and ethical concerns

We require the evaluators to obtain the SPEC CPU bench-
marking suites themselves, since we cannot distribute the
licensed software. As a memory sanitizer, FloatZone poses
no risks to the security of the target machine.

D.2.2 How to access

The files for the artifact evaluation are available at:
https://github.com/vusec/floatzone/releases/
tag/ae-final.

D.2.3 Hardware dependencies

While FloatZone has no strict hardware requirements (we
assume x86-64), we highly recommend using a modern Intel
CPU, since FloatZone’s performance depends on the through-
put of the floating point unit. We have ran benchmarking
experiments on various CPUs (see Figure 6 for more informa-
tion).

D.2.4 Software dependencies

Some packages from the Ubuntu package manager are re-
quired to be installed to accomodate for the build process of
FloatZone (e.g., for building LLVM). These are described in
the Set-up section.

D.2.5 Benchmarks

For this artifact we benchmark using the SPEC CPU2006
benchmarking suite.

D.3 Set-up

We recommend using a bare-metal desktop system with 32GB
of RAM, running Ubuntu 22.04, glibc 2.35, and a stock v5.15
Linux kernel.

D.3.1 Installation

1. Obtain the artifact source:

git clone \
https://github.com/vusec/floatzone.git \
--recurse-submodules

cd floatzone

2. Install some standard dependencies:

sudo apt install ninja-build cmake gcc-9 \
autoconf2.69 bison build-essential flex \
texinfo libtool zlib1g-dev

3. Configure the FloatZone environment by editing the
env.sh file and modifying the FLOATZONE_TOP variable to
reflect the working directory of the system, and then run:

source env.sh

4. Install the FloatZone infrastructure by running:

./install.sh

NOTE: installing LLVM can take up a lot of RAM when
using multiple cores. If the compilation process crashes, use
the ninja -j <cores> parameter inside install.sh to use
less cores.

D.3.2 Basic Test

To test the functionality of FloatZone, we provide a test case
in the example directory. Run make to obtain three versions
of the buggy binary: uninstrumented, instrumented by Float-
Zone, and instrumented by ASan. The program contains a
buffer of size 16, and the command line argument is used as
an index in this array. Confirm that executing:

./buggy_floatzone_run_base 16

results in an error report containing a faulting address, while
using index 15 does not. See the README on GitHub for
the exact expected output format.

D.4 Evaluation workflow

D.4.1 Major Claims

(C1): FloatZone can detect spatial and temporal memory
errors bounded by its security guarantees (as described
in Section 5). This is proven by experiment E1.

(C2): FloatZone provides high performance in terms of run-
time and memory overhead (see Sections 7.3 and 7.4).
This is proven by experiment E2.
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D.4.2 Experiments

(E1): [1 human-hour]: Confirming memory error detection.
How to: The Juliet Test Suite can be used to confirm
that FloatZone detects memory errors. This suite con-
tains test cases for spatial and temporal memory errors.
Preparation: Make sure that SEGFAULTS are re-
ported: in the runtime directory, edit wrap.c and
ensure that CATCH_SEGFAULT is set to 1. Run make
inside this directory to ensure the shared object file is
up-to-date. No further preparation is required if the
env.sh and install.sh scripts have been used. If
interested, FloatZoneExt (with partial overflow detection
capabilities, see Section 5 and Figure 5) can be tested
by modifying the FLOATZONE_MODE variable to also
contain the term ‘just_size’ in env.sh.
Execution: python3 run.py run juliet \
floatzone_O0 --build --cwe 121 122 \
124 126 127 415 416

Results: FloatZone and FloatZoneExt can detect most
of the spatial and temporal memory errors present in
the Juliet Test Suite. The expected results are reported in
Table 1 and Section 7.2.

(E2): [15 human-minutes + 5 compute-hours]: Confirming
runtime and memory performance

How to: Run the SPEC CPU2006 benchmarking suite in-
strumented by FloatZone and ASan, and observe the
performance overhead.

Preparation: SPEC CPU2006 needs to be available on the
system and the FLOATZONE_SPEC06 variable in env.sh
needs to point to the directory where it is installed.
For the artifact evaluators, if they cannot obtain SPEC
CPU2006, we can provide access to a machine ready
to run SPEC. In order to run SPEC CPU and its bench-
marks, we make use of a public infrastructure under the
infra directory. The infra also makes sure the SPEC bi-
naries run pinned to core 0. Make sure that the necessary
python packages are installed:

pip3 install psutil terminaltables

Then, since some of the SPEC binaries contain false
positives (see Table 3), in the runtime directory, edit
wrap.c and ensure that SURVIVE_EXCEPTIONS is set to
1. Run make inside this directory to ensure the shared
object file is up-to-date. As can be seen in the wrap.c
source file, this only ensures that exceptions do not abort,
and the program continues executing where it left off.

Execution: We make use of the run.py script to run SPEC
CPU2006 along with the intended instrumentations.
Execute the following command, which runs SPEC
CPU2006 for three runs: the baseline, one with ASan,
and one with FloatZone, and hence takes multiple hours:

python3 run.py run spec2006 default_O2 \
asan_O2 floatzone_O2 --build \

--parallel=proc --parallelmax=1

Results: To obtain the results from the SPEC CPU2006
runs, we again make use of the run.py script.
Find the corresponding output folder in the results
directory that matches the start timestamp (e.g.:
results/run.2023-06-19.13-56-59). Then execute
the following command, replacing the directory with the
one just obtained:

python3 run.py report spec2006 \
results/run.2023-06-19.13-56-59 \
--aggregate geomean --field runtime:median \
maxrss:median

The output of this command can then be used to calculate
the runtime and memory overheads for each individual
binary, as well as for the geomean. As reported in Table 4:
if ran on the i9-13900K machine, the expected runtime
overhead for FloatZone is 36.4%, and 77.8% for ASan,
while the memory overhead is expected to be 182% and
237%, for FloatZone and ASan, respectively.

D.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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