
Snappy: Efficient Fuzzing with Adaptive and Mutable Snapshots
Elia Geretto

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

e.geretto@vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

giuffrida@cs.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

herbertb@cs.vu.nl

Erik van der Kouwe
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

vdkouwe@cs.vu.nl

ABSTRACT

Modern coverage-oriented fuzzers play a crucial role in vulnera-
bility finding. While much research focuses on improving the core
fuzzing techniques, some fundamental speed bottlenecks, such as
the redundant computations incurred by re-executing the target for
every input, remain. Prior solutions mitigate the impact of redun-
dant computations by instead fuzzing a program snapshot, such as
the one placed by a fork server at the program entry point or gener-
alizations for annotated APIs, drivers, networked servers, etc. Such
snapshots are static and, as such, cannot adapt to the characteristics
of the target and the input, missing opportunities to further reduce
redundancy and improve fuzzing speed.

In this paper, we present Snappy, a new approach to speed up
fuzzing by aggressively pruning redundant computations with
adaptive and mutable snapshots. The key ideas are to: (i) push
the snapshot as deep in the target execution as possible and also
end its execution as early as possible, according to how the target
processes the relevant input data (adaptive placement); (ii) for each
identified placement, cache snapshots across different inputs by
patching the snapshot just-in-time with the relevant input data
(mutable restore). We propose a generic design applicable to both
branch-agnostic and branch-guided input mutation operators and
demonstrate Snappy on top of Angora (supporting both classes
of operators). Our evaluation shows that, while general, Snappy
scores gains even compared to a fork server with hand-optimized
static placement such as in FuzzBench, for instance obtaining up to
≈1.8x speedups across benchmarks.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

All modern greybox fuzzers [37] share the same underlying prin-
ciple: repeatedly running the same program with different test
inputs to trigger bugs. As such, for any fuzzer, executing more test
cases per unit of time increases the performance of the fuzzing
campaign by either achieving the same coverage faster, saving time
and energy, or achieving better coverage given the same resources.

When fuzzing, the time spent for a single execution of a target
user program can be roughly divided in: (i) the time spent in the
operating system to start the program, (ii) the time spent in userland
to run the program, and (iii) the time spent parsing the results in
the fuzzer. Speeding up any of these steps (as done in, e.g., [21, 35])
allows one to reduce the execution time and thus increase the speed.

Looking at the userland execution, a common source of over-
head is redundant computation (i.e., execution that is always the
same across inputs). Examples include the dynamic loader and, on
larger programs, the initialization of the target itself. To mitigate the
loader overhead, AFL [37] introduced snapshots: a fork server tak-
ing a reusable snapshot before the program starts executing. This
works for all programs, but does not eliminate all the redundant
computation. Some other tools, such as AFL++ [14], allow the user
to manually move the snapshot further down into the execution.
This, however, requires knowledge of the target, manual work, and
only allows one to prune redundancy shared among all executions,
not subsets of similar executions. Similar static snapshot policies
have been applied to specific APIs [? ], drivers [32], kernels [28],
hypervisors [27], servers [29], etc.

In this paper, we propose a performance optimization based
on dynamic and more extensive snapshot policies to prune much
more redundant computation than possible before. Our approach,
which we term Snappy, is based on adaptive and mutable snapshots.
The former allows Snappy to automatically push the snapshot
placement as deep in the execution as possible and also terminate its
execution as early as possible, according to how the target processes
the relevant input data. The latter allows Snappy to automatically
cache snapshots across different inputs by patching the snapshot
just-in-time with the relevant input data.
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To develop these ideas, we propose two novel dynamic taint
analysis-based [? ] techniques catering to both common branch-
agnostic (a la AFL [37]) and branch-guided (a la VUzzer [26]) input
mutation operators: First Tainted File operation (FTF) and First
Tainted Memory read (FTM) snapshots (respectively). FTF automat-
ically places a snapshot when the program first loads any input
data, automating the process of pruning redundant computation
across all executions in a branch-agnostic fashion. FTM, in turn,
automatically places a snapshot when the program loads input data
controlling a branch that a branch-guided input mutator seeks to
flip to improve coverage. This prunes even redundant computation
that is not present in all executions and only shared among sub-
sets of them. Moreover, we can operate an early exit optimization
by ending the snapshot execution as soon as the target branch is
reached. Since FTM, despite potentially producing higher gains,
trades off faster executions against more frequent (and thus costly)
snapshots, we also developed an algorithm to dynamically switch
between FTM and FTF, selecting the most promising technique at
any given time while fuzzing.

While our ideas are generally applicable to a broad range of
fuzzers, we prototyped Snappy on top of Angora [11], since it
combines both branch-agnostic and branch-guided input mutation
operators, allowing us to test our system with both. Most other
fuzzers (e.g. AFL++ [14], libFuzzer [? ] and RedQueen [5]) lack one
or the other of these features, making them less suitable for testing
FTF and FTM collectively. In addition, we also backported a host of
common optimizations present in more recent works to Angora to
make it the best baseline possible, given our requirements. We evalu-
ated our approach on FuzzBench [19], a well-known benchmarking
suite which already includes hand-optimized (static) snapshot place-
ments to achieve high speeds. Despite such manual optimizations,
our experiments showed Snappy can significantly outperform the
baseline in 53% of the benchmarks, with an average speedup of 1.2x
(and 1.8x in one case). Moreover, we present an evaluation on two
real-world programs, sqlite3 and objdump, to better represent
the performance of Snappy without manual optimizations. In this
scenario, Snappy reported coverage increases of 3% and 31%.

Summarizing:

• We present a generic approach to automatically prune re-
dundant computation while fuzzing by means of adaptive
and mutable snapshots.
• We show our approach can be instantiated in practice with

two novel (FTF and FTM) automatic snapshot techniques.
Our techniques cover the two common classes of input muta-
tion operators and are applicable to a broad range of fuzzers.
• We present Snappy, an open-source prototype of our design,

publicly available at https://github.com/vusec/snappy.
• An evaluation of Snappy to demonstrate the effectiveness of

our approach and which types of fuzzing campaigns benefit
the most from our speedups.

2 BACKGROUND

Snappy uses dynamic taint analysis (DTA) [? ] to automatically
place a snapshot and prune redundant execution for different input
mutators. We now present background information on snapshots
and input mutation for fuzzing.

2.1 Snapshots for fuzzing

To eliminate redundant computation while the fuzzing target starts
up, researchers have devised several snapshot mechanisms for re-
cent fuzzers. The goal is to bring the target to a state where it can
be executed as quickly as possible.

The general concept of snapshots can be implemented in very
different ways, depending on the fuzzer’s needs. One major dis-
tinction is between fuzzers that are emulation or virtualization-
based [27–29, 32] and fuzzers that are process-based [11, 26, 37].
Virtualization is relatively slow [14, 37], but can support privileged
and binary-only code more easily. Process-based approaches do
not incur emulation overhead, and are typically used to run instru-
mented user-space programs. Our prototype is process-based, but
our design is equally applicable to virtualization-based fuzzing.

Our prototype builds on top of a fork server, a common snapshot
mechanism for process-based fuzzers popularized by AFL [37] to
avoid the cost of the execve syscall and instrumentation-related
initialization for each run. The idea is to initialize the program once
and then clone the initialized process at a statically determined
program point for each run using the fork syscall. This approach
effectively relies on the operating system’s copy-on-write features
to retain the original memory state in the snapshot, but shared
state, such as file descriptors, requires special handling. Unlike
the traditional (static) model, Snappy’s snapshots are adaptive and
mutable, allowing the fork server to be automatically initialized to
a state where input data is already in memory and will be adjusted
after the snapshot is restored.

2.2 Input mutation for fuzzing

Many modern fuzzers [11, 20, 26] augment the set of general-
purpose (or branch-agnostic) input mutation operators as offered
by fuzzers such as AFL [37] with specialized (or branch-guided)
input mutation operators based on dynamic taint analysis (DTA).
Specifically, DTA is used to link branches in a program under test to
bytes in the input, so that the fuzzer can focus its mutation efforts
on exactly those bytes to flip the corresponding branches. While
solving path constraints to flip branches can also in principle be
done with concolic execution, doing so is generally more expensive.

Fuzzers such as Angora [11] implement support for both classes
of operators. Branch-agnostic mutation operators do not use DTA
and simply modify test cases (inputs) by flipping bits, injecting
interesting values, or splicing test cases together. Branch-guided
mutation operators, on the other hand, use DTA information to flip
particular branches with specialized search strategies. Examples
include an operator which explores all the values of a single byte
(used when only a single input byte taints the target condition), and
a gradient descent operator (which treats the tainted bytes as inputs
for a gradient descent algorithm that searches for the right values).
DTA information can also be used to track test case sizes, allowing
the creation of DTA-based operators that increase or decrease the
size of the test case. For each run, Snappy considers the mutation
operator currently in use to determine the potential set of inputs
for which snapshots can be reused.

It is also possible to reduce the performance impact of DTA by
compiling the target program into two different instrumented bina-
ries: a slow one to track taint, and a fast one with only lightweight

https://github.com/vusec/snappy
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Figure 1: Overview of Snappy, illustrating how its compo-

nents (in yellow) integrate in the fuzzing logic (in grey).

instrumentation that is used for repeated executions of the target
program with different test cases [11]. The fast binary reports to
the fuzzer the operands of only one specific target condition, which
the fuzzer uses to decide whether it should continue targeting the
current branch or switch to a new one. Snappy adopts a similar ap-
proach to optimize its DTA-based instrumentation, but uses tainting
to find the ideal snapshot position for both classes of input mutation
operators, as well as to create mutable snapshots in which part of
the test input can be patched just-in-time in memory.

3 OVERVIEW

While fuzzing, we tend to do the same work over and over again.
Examples include running the dynamic linker and initializing the
target program itself. While the first operation can be trivially elim-
inated with mechanisms such as the AFL fork server, the latter
requires manual work. In addition to these known sources of re-
dundant computation, similar test cases tend to share the initial
portion of their execution trace because the program will use the
same code regions to handle them—under the assumption common
to fuzzers that the execution is mostly deterministic. As an example,
all JSON test cases that contain only arrays will visit array-related
code, regardless of the size or content of such arrays.

To reduce redundant computation, we first create snapshots of
the target program and then, rather than executing the program
from the start each time, we recover an appropriate snapshot to skip
the redundant part of the execution. To achieve the best possible
performance, one needs to take a snapshot at the latest possible mo-
ment to skip as much redundant computation as possible. However,
it is also important to reuse snapshots as often as possible to reduce
snapshot creation overhead. These are conflicting requirements.
Any input data processed before taking the snapshot cannot be
mutated by the fuzzer, making later snapshots less reusable.

Snappy offers a design for snapshot-based fuzzing that automat-
ically chooses the optimal snapshot placement, allowing the fuzzer
to perform more runs per time unit, reducing compute time and
power usage needed to reach results. To achieve this, we present
two novel techniques and an algorithm that dynamically selects
the best one throughout the fuzzing campaign. The first technique,
First Tainted File operation snapshots (FTF) places the snapshot at
the first read of the content of the test case into memory, automati-
cally pruning redundant program initialization. This is our baseline
technique, which Snappy can apply to all the input mutation oper-
ators. The second technique, First Tainted Memory read snapshots

(FTM), pushes the snapshot even further into the execution, to
where the input bytes that are relevant for specific branches are
first used, also pruning the redundant computation between similar
test cases. However, this technique only applies to branch-guided
input mutation operators.

As shown in Figure 1, Snappy dynamically selects either FTF or
FTM snapshots, depending on the mutation operator. For arbitrary
operators, Snappy can rely on FTF to create and then reuse a single,
global snapshot at the first I/O operation on the input file. In case
the (branch-guided) mutation operator supports FTM snapshots,
rather than applying them blindly, Snappy uses a predictor to decide
if doing so is beneficial. If the predictor confirms that an FTM
snapshot is needed, it builds one in three steps, each using a different
instrumented version of the program. The first step determines
where to place the snapshot based on the first tainted memory
read identified by DTA. The second step locates all tainted (input)
bytes that will exist in the memory snapshot we are generating—to
allow the fuzzer to modify them easily for each test case using the
snapshot. The third step initializes the snapshot itself. The first two
steps in the process benefit from aggressive caching and Snappy
applies the full three-step pipeline only if the results are not cached.
Snapshots and caching will be explained in detail in Section 4.

4 DESIGN

To speed up fuzzing, we use snapshots to reduce the amount of code
executed redundantly. This section describes the techniques we use
to achieve this. We first describe the First Tainted File operation
(FTF) policy, which is a lightweight and widely applicable approach
using I/O wrappers. Subsequently, we discuss First Tainted Memory
read (FTM), which uses more heavyweight dynamic taint analysis
to push the snapshot point even deeper into the execution. Finally,
we discuss our early exit optimization that reduces execution time
by terminating executions that achieved their goals.

4.1 First Tainted File Operation

Fuzzers explore program code by varying the program’s inputs,
typically provided through an input file. By definition, any code
executed prior to operating on this file is input-independent and
behaves identically (for deterministic programs) across runs. In
other words, if we consider the input to be tainted, a snapshot made
on the First Tainted File operation (FTF) can be reused as-is for all
runs. This automates a process that is typically performed by hand
to prune redundant computation due to program initialization.

Finding the FTF requires only lightweight program analysis and
instrumentation: by wrapping all I/O functions, we can detect the
first file operation executed by the fuzzer. If the operation obtains
information that the fuzzer may change, such as reading the file’s
contents or querying the file’s size, we place the snapshot inside the
I/O wrapper, just before the file is read or otherwise queried. For
example, when considering Listing 1, this technique would position
the snapshot at line 6, inside the wrapper for fread.

Using FTF, a single snapshot can be reused for the whole fuzzing
campaign, as it happens for (static) snapshots taken before the be-
ginning of the execution of the target program. In addition, it leaves
the fuzzer free to use any mutation operator, even one that performs
test case size changes, as long as the functions used to perform size
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1 int main(int argc, char* argv[argc + 1]) {
2 initialization();
3 FILE* file = fopen(argv[1], "rb");
4 ...
5 uint8_t buffer[10];
6 fread(buffer, 1, sizeof(buffer), file);
7 if (buffer[0] != 42) { exit(1); }
8 ...
9 uint8_t buffer2[sizeof(buffer)];

10 memcpy(buffer2, buffer, sizeof(buffer));
11 other_operation();
12 if (buffer2[1] == 10) { abort(); }
13 ...
14 }

Listing 1: Example with positions of FTF and FTM snapshots.

checks are also wrapped. To this end, Snappy generalizes the FTF
approach to the first tainted I/O operation beyond reads, wrapping
functions such as fstat (commonly used to perform size checks)
and conservatively taking snapshots before the first read as needed.

4.2 First Tainted Memory Read

The fuzzer’s input data is often not immediately used after reading
it from the input file. It is stored in a buffer, possibly copied around,
and only later used in a computation, conditional branch, or as a
syscall argument. In addition, after certain mutation operators are
used, most of the input data typically remains the same. Therefore,
FTF still leaves considerable redundant computation, allowing us to
safely delay snapshot creation up to the point where the mutated
data is actually used. With FTM, we taint the data that is to be
mutated, run the program up to the point where the target tainted
data is loaded from memory, and create a snapshot. We can use this
snapshot for any run that only mutates the tainted part of the input,
as long as we perform the mutation in-memory after restoring the
snapshot. This approach skips all redundant computation up to the
point where the executions diverge.

Similarity sets. Since divergence in the execution path originates
from the differences in the content of each test case, we define a
similarity set, thus a set of similar test cases, by selecting a test
case size, a property commonly checked in programs, and a set of
bytes that can vary given that size. As an example, all test cases
that have size 42 and differ only in their 12th byte are a similarity
set. It is possible to observe that a similarity set so defined includes
test cases that share a common execution prefix because, as long
as the (nontainted) data being used is the same, the execution path
will also stay the same. For each similarity set, the variable bytes
serve as taint sources, and we use dynamic taint analysis to keep
track of where these bytes end up in memory. When one of them is
loaded into a register to perform a computation, we conservatively
take a snapshot before the executions can diverge. Operations such
as copies can be ignored because they taint new memory locations,
but they do not generate new values using tainted bytes.

Looking now at Listing 1, we define a set of similar test cases
that have size 12 and vary only by their second byte. Both these
parameters are determined by the mutation operator and the test
case selected by the fuzzer. The FTM policy will start tracking the

bytes read into buffer at line 6. The check at line 7 will have the
same result for all test cases in the similarity set and thus will
not trigger a snapshot. The copy at line 10 will also not trigger a
snapshot because the tainted bytes are copied, but this operation
by itself cannot alter the result of the execution. The check at line
12 will finally trigger the snapshot because the program loads a
tainted byte to check an equality.

Mutable snapshots. When compared to FTF snapshots, one ad-
ditional step is required by the FTM policy after the snapshot is
placed: since the tainted (mutated) bytes are already in memory
when the snapshot is taken, we need to replace them with the ones
in the new test case each time the snapshot is restored. This means
that, to use this method, simply taking the snapshot is not sufficient,
it is also necessary to provide information about the position of all
tainted bytes in memory when the snapshot is taken. This strategy
allows us to implement the mutable snapshots that we need.

Mutation operators and similarity sets. Our FTM policy requires
one snapshot to be taken during the fuzzing campaign for each
similarity set. How many snapshots we need depends on how many
test cases are considered similar enough to reuse the same snapshot.
We need to balance between snapshots deep in the execution, but
taken too often, and snapshots taken rarely, but too early in the
program. Indeed, snapshot creation is an expensive operation and
performing it too often may actually hurt the general performance
of the fuzzer. In Snappy, we have chosen to define similarity sets as
all the possible mutations the current operator can perform given
a specific test case, which determines the test case size. Although
more complex aggregations are possible, we favored simplicity and
predictability in our current Snappy prototype.

The definition of similarity given before implies a few restric-
tions on the mutation operators that a fuzzer can use: first of all,
they cannot modify the size of a test case; secondly, they can use
snapshots more efficiently if they produce test cases that fall within
a small similarity set, instead of a large one. Trying to modify all
bytes in a test case will produce a very large similarity set and
thus a shallow snapshot, while trying to modify only a few will
produce a small set and a deep snapshot. In the former case, the
FTF policy is likely to provide better performance than FTM. In
general, FTF is preferable for mutators that offer no guarantees on
the mutations they perform, while FTM is better suited for common
branch-guided mutators that have a high degree of locality.

FTM snapshot pipeline. Snappy generates FTM snapshots in three
steps, as shown in Figure 1: (1) snapshot placement, (2) input track-
ing, and (3) snapshot initialization. The snapshot placement step
instruments the program with byte-granularity dynamic taint anal-
ysis (DTA), tainting the bytes that are variable in the current sim-
ilarity set, and aborting the first time tainted data is loaded from
memory. This yields the ideal (that is, latest possible) snapshot
position for the similarity set. The input tracking step also uses
byte-granularity DTA, runs up to the snapshot position, and yields
the locations of the bytes that need to be mutated when the snap-
shot is restored. This cannot be done in the first step because the
actual snapshot location may be earlier than the ideal snapshot
location due to implementation limitations (see Section 5.3 for de-
tails). The third step runs the program up to the snapshot location,
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to be used as a fork server by the fuzzer. The third binary is built
without DTA to ensure it can execute quickly.

Caching. Each snapshot requires three program executions, the
first two of which use dynamic taint analysis. As such, creating
a snapshot is an expensive operation. Snappy uses caching to cut
down snapshot cost. To reduce snapshot creation time, we elimi-
nate redundant computation even during snapshot creation, taking
snapshots for each of the three binaries. This allows us to perform
expensive analyses only once, as long as their results are based only
on static properties of the binaries, such as DWARF symbols.

Caching many FTM snapshots for use by the fuzzer is impractical
due to the fork server model fuzzers typically use. Instead, we cache
analysis results from the first two steps. We reuse a single snapshot
when fuzzing within the same similarity set and we quickly con-
struct a new snapshot using the cached analyses when the fuzzer
switches to another similarity set. In this way, when restoring
a cached snapshot, Snappy needs to rerun only the third binary,
which is faster because it does not use dynamic taint analysis.

4.3 FTM benefit predictor

The FTM policy is beneficial only when each snapshot is used at
least for a certain number of executions. The worst case is that
a snapshot is created and then used only for one execution, after
which the fuzzer decides that it is not worth using anymore. Unfor-
tunately smart fuzzers, such as Angora, may exhibit this behavior.
Having a success condition, such as solving a specific comparison,
allows the fuzzer to decide to change target early if this condi-
tion is met. Rather than imposing restrictions on the fuzzer, which
should simply try to increase coverage as fast as possible, we use a
predictor to decide if an FTM snapshot is likely to be beneficial.

Although more advanced predictors are possible, our prototype
is based on a simple dynamic threshold. Specifically, within a simi-
larity set, the fuzzer will run the target binary without snapshot
for a number of times equal to the threshold. If the fuzzer has not
changed target before the threshold is reached, it predicts that a
snapshot will indeed be beneficial.

This solution allows us to try and snapshot at the moment when
doing so provides the greatest benefit. For example, if the fuzzer
usually performs either 1 or 100 executions before changing target
and a snapshot can be amortized in 10 executions, the best solution
is to snapshot after the first execution. A lower threshold would
make the system waste time each time the fuzzer performs only one
execution per target, while a higher one would forfeit some of the
gains obtainable with the snapshot. It is also possible that, on certain
binaries, the gain provided by the snapshots is so reduced that it is
not possible to amortize the snapshots; in that case, snapshots are
effectively disabled, falling back to FTF snapshots.

We position the threshold dynamically using a benefit metric, as
illustrated by Algorithm 1. The computation is based on runtime
statistics collected by the fuzzer and triggered every 60 seconds.
The statistics collected include data for: the time taken to perform
an execution using FTF snapshots (𝑝𝑙𝑎𝑖𝑛_𝑡𝑖𝑚𝑒); the time taken to
perform an execution using FTM snapshots (𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑡𝑖𝑚𝑒); the
time taken to prepare a snapshot (𝑠𝑛𝑎𝑝_𝑡𝑖𝑚𝑒); and the number of
executions for which a snapshot has been used (𝑒𝑥𝑒𝑐𝑠_ℎ𝑖𝑠𝑡 ).

Algorithm 1 Predictor: Dynamic threshold placement
function get_benefit(𝑡ℎ𝑟𝑒𝑠 , 𝑒𝑥𝑒𝑐𝑠_ℎ𝑖𝑠𝑡 , 𝑎𝑚𝑜𝑟𝑡_𝑒𝑥𝑒𝑐𝑠)

𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← 0
𝑎𝑚𝑜𝑟𝑡_𝑡ℎ𝑟𝑒𝑠 ← 𝑡ℎ𝑟𝑒𝑠 + 𝑎𝑚𝑜𝑟𝑡_𝑒𝑥𝑒𝑐𝑠
for 𝑏𝑖𝑛 ∈ 𝑒𝑥𝑒𝑐𝑠_ℎ𝑖𝑠𝑡 |𝑏𝑖𝑛.𝑣𝑎𝑙𝑢𝑒 > 𝑎𝑚𝑜𝑟𝑡_𝑒𝑥𝑒𝑐𝑠 do

𝑐𝑜𝑙_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← (𝑏𝑖𝑛.𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑚𝑜𝑟𝑡_𝑡ℎ𝑟𝑒𝑠) · 𝑏𝑖𝑛.𝑐𝑜𝑢𝑛𝑡
𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 + 𝑐𝑜𝑙_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡

end for

return benefit
end function

function get_threshold(𝑝𝑙𝑎𝑖𝑛_𝑡𝑖𝑚𝑒 , 𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑡𝑖𝑚𝑒 ,
𝑠𝑛𝑎𝑝_𝑡𝑖𝑚𝑒 , 𝑒𝑥𝑒𝑐𝑠_ℎ𝑖𝑠𝑡 )

𝑔𝑎𝑖𝑛 ← Mdn(𝑝𝑙𝑎𝑖𝑛_𝑡𝑖𝑚𝑒) −Mdn(𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑡𝑖𝑚𝑒)
𝑎𝑚_𝑒𝑥 ← Mdn(𝑠𝑛𝑎𝑝_𝑡𝑖𝑚𝑒)/𝑔𝑎𝑖𝑛
𝑏𝑒𝑠𝑡_𝑡ℎ𝑟𝑒𝑠 ← +∞
𝑚𝑎𝑥_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← 0
for all 𝑡ℎ𝑟𝑒𝑠 |𝑡ℎ𝑟𝑒𝑠 < Max(𝑒𝑥𝑒𝑐𝑠_ℎ𝑖𝑠𝑡 .𝑣𝑎𝑙𝑢𝑒𝑠) do

𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← get_benefit(𝑡ℎ𝑟𝑒𝑠, 𝑒𝑥𝑒𝑐𝑠_ℎ𝑖𝑠𝑡, 𝑎𝑚_𝑒𝑥)
if 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 > 𝑚𝑎𝑥_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 then

𝑏𝑒𝑠𝑡_𝑡ℎ𝑟𝑒𝑠 ← 𝑡ℎ𝑟𝑒𝑠

end if

end for

return 𝑏𝑒𝑠𝑡_𝑡ℎ𝑟𝑒𝑠
end function

The frequencies collected for the last item are decayed by 15%
every 15 minutes so that temporal locality in the fuzzing process
is preserved (empirically chosen values that worked well across
applications). It is common for the fuzzer to perform deterministic
mutations at the beginning of the run, which exhibit one pattern,
and then switch to random ones later, which may exhibit another.

The intuition behind this algorithm is that it finds the threshold
value (number of runs before taking a snapshot) for which it is
most likely that the cost of taking a snapshot can be amortized. We
calculate a benefit function for various candidate thresholds and
then pick the most beneficial one. The benefit formula considers the
distribution of past number of executions per snapshot taken. We
multiply the number of samples in each bin in the histogram of this
distribution (𝑏𝑖𝑛.𝑐𝑜𝑢𝑛𝑡 ) by the gain or loss that would result from
using the new snapshot for the amount of executions represented
by that bin (𝑏𝑖𝑛.𝑣𝑎𝑙𝑢𝑒), given a certain threshold (𝑡ℎ𝑟𝑒𝑠). Summing
up all the benefits for each bin, both positive and negative, gives
the total benefit for a threshold.

The advantage of this benefit function is that, given a snapshot
amortizable in 10 executions, the algorithm is aware that perform-
ing 9 executions with it causes a loss that is significantly lower than
performing only 1 execution. In addition, if the fuzzer commonly
runs 9 times with the same snapshot, but rarely 1000 times, the
algorithm realizes that snapshots may still be beneficial: commonly
losing little time may be offset by rarely gaining a lot.

We also considered simpler approaches to select the threshold,
such as choosing a fixed value for all programs. However, the op-
timal value is very sensitive to the program under test and to the
current state of the campaign. We thus opted for a dynamic solution
that takes such factors into account.
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4.4 Early exit

So far we considered redundant computation at the start of execu-
tions, but there is also a potential for optimization at the end. It is
quite common for fuzzers to hit always the same error paths. As an
example, while trying to produce a valid ELF, a fuzzer may hit the
error path for an invalid magic number a huge amount of times.

When using a branch-targeted mutation operator, a fuzzer uses
mutations that are specifically targeted towards solving a certain
path condition. If that path condition is not solved in the current
execution, these targeted mutations are unlikely to trigger other in-
teresting behavior. Based on this assumption, we make the program
exit early in such cases, cutting off the redundant computation after
the target condition has been encountered. When the condition is
eventually solved, the program is allowed to finish its execution, so
that the coverage increase can be recorded. If any coverage increase
is ever lost due to this technique, it can be quickly regained when
the condition protecting the new portion of code is targeted.

5 IMPLEMENTATION

To evaluate our design, we built a prototype of Snappy on top of the
Angora fuzzer [11]. Angora supports various mutation operators
with a wide range of mutation patterns. It includes both AFL-like
(branch-agnostic) mutation operators, which tend to modify large
portions of the test case at once, but also very targeted (branch-
guided) operators that can be used to focus all mutation effort on
a single condition. As such, it is well-suited to assess the efficacy
of our approach for both large and small similarity sets. To ensure
that our results are relevant to the current state of the art, though,
we integrated various performance improvements developed since
the publication of Angora. In this section, we describe the improve-
ments that we made to the Angora baseline, as well as relevant
implementation details for the snapshot generation pipeline. Limi-
tations of the current implementation are discussed in Section 7.

5.1 Improvements to Angora

After porting Angora to LLVM 11 and fixing an issue that pre-
vented it from applying the AFL mutation operators correctly, we
significantly optimized its performance (by around one order of
magnitude on our benchmarks). These changes were necessary to
remove common and unnecessary bottlenecks that would have oth-
erwise dominated the execution time. To ensure fair benchmarking,
all improvements are included in the baseline in Section 6.

The first performance improvement is to use kernel-based snap-
shots [35] as implemented in AFL++ with a kernel module1, but
optimized by us. These fast snapshots replace the slow AFL-like
fork server in the original Angora. Our version features faster re-
stores, the ability to handle large memory maps, such as the DFSan
shadow map, and the ability to restore file descriptors.

The second major performance improvement integrated into An-
gora is AVX2-accelerated coverage map parsing. The algorithm was
taken from the AFL++ project [14]. This change helps in improving
performance when fuzzing small and fast target programs, given
the large coverage map (1 MB) used by Angora.

1https://github.com/AFLplusplus/AFL-Snapshot-LKM

5.2 FTF snapshots

We implemented FTF snapshots by using our kernel-based snapshot-
ting system to take a checkpoint at the first tainted file operation and
restore the snapshot upon termination. We hook into termination
events from the kernel module. To hook into tainted file operations,
our instrumentation wraps all the relevant calls (mmap, *fscanf,
*getc*, *gets*, get{line,delim}, *read*, *stat, ftell, *seek)
and places the snapshot at the first wrapper invocation.

5.3 FTM snapshots

In this section, we describe the implementation of the pipeline
used to build FTM snapshots, which was described in Section 4.2.
This pipeline consists of three steps, as shown in Figure 1: (1)
snapshot placement, (2) input tracking, and (3) snapshot initial-
ization. The first two steps perform dynamic taint analysis using
LLVM DataFlowSanitizer (DFSan) [? ], while all three use LLVM
XRay’s code patching capabilities [6] to dynamically enable/disable
snapshot-related instrumentation at each function entry/exit.

Snapshot placement. The first step in the pipeline decides where
the snapshot should be placed. We wrap I/O calls and taint reads
from the input generated by the fuzzer according to the current
similarity set. We use taint analysis to follow the bytes in memory
and, when one is loaded to perform a computation, we select the
most recently encountered instrumentation position.

Instrumentation positions are defined by the instrumentation
method currently being employed. In the case of Snappy, snapshots
can be taken either at the beginning or at the end of a function,
due to the limitations imposed by LLVM XRay. In Listing 1, the
last valid instrumentation position prior to line 14 is at the end of
function other_operation, called at line 13. In practical situations,
such function calls are frequent, so the instrumentation point is
typically close to the desired snapshot position.

Finally, we inform the fuzzer about the chosen instrumentation
point, encoding it with its associated XRay identifier and the num-
ber of times it has been encountered before taking the snapshot.

Input tracking. The second step in the pipeline retrieves the loca-
tion of individual tainted bytes present in memory at the snapshot
position. We use byte-level dynamic taint analysis, exploiting the
same I/O wrappers as the first instrumentation, but tracking each
tainted byte in the input test case separately. Given that we know
the instrumentation point selected to place the snapshot in advance,
once it is encountered, all tainted bytes can be located in memory.

Snappy parses the DFSan shadow memory to find which mem-
ory locations are tainted. It then maps these addresses to address-
independent metadata to be able to find them in the third binary
in the pipeline. We split allocations based on their allocation type:
stack, heap, or global. Respectively, we identify stack allocations
using LLVM StackMaps, heap allocations using a serial identifier,
and global allocations using DWARF information. Once we know
the base of an allocation, we can locate single bytes using an offset.
Other taints, such as the ones present in deallocated stack frames
or freed heap chunks, are discarded.

Snapshot initialization. The last step in the pipeline prepares
the snapshot for use by the fuzzer. Snappy uses a binary with the
instrumentation needed by the fuzzer to function correctly (i.e. for

https://github.com/AFLplusplus/AFL-Snapshot-LKM
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coverage tracking) and XRay instrumentation, which minimizes the
overhead introduced by the snapshotting system when disabled.

Given the information provided by the previous analyses, the
binary runs up to the snapshot position. There, it records a snapshot
and it converts the metadata about the tainted bytes into valid
addresses for the current binary. Later, each time the fuzzer restores
the snapshot, we use the addresses pointing to the tainted bytes to
update them with the values found in the new test case. We make
this process faster by mapping test cases in a memory region shared
between the fuzzer and the instrumented binary.

6 EVALUATION

We conducted our experiments on two servers, both fitted with an
AMD Ryzen Threadripper 2990WX and 128 GB of RAM. We ran
the experiments in Docker containers running on Ubuntu 20.04.

We completed our first experiment on FuzzBench, a well-known
benchmarking suite which includes various benchmarks that have
been hand-optimized to remove all the unnecessary initialization
code; this renders our FTF policy not very effective. The goal of
this experiment is to prove that, even in such a difficult scenario,
Snappy is still able to provide significant speed improvements.
We then tested Snappy on two complete programs, sqlite3 and
objdump using simpler harnesses. Our goal, in this case, is to pro-
vide a more realistic representation of the speed achievable using
Snappy in a more realistic scenario. Finally, we examined how the
speed improvements generated by Snappy correlate to coverage
improvements in our benchmarks.

Each configuration in our experiments has been tested 16 times,
enough to reach statistical significance for most of the benchmarks,
with campaigns lasting 24 hours, following the recommendations
of [17]. Our total CPU budget thus amounts to around 18 months.

6.1 FuzzBench

To show that Snappy can improve fuzzing speed, we measured the
number of executions achieved in 24 hours by our prototype, and
compared against our optimized version of Angora (see Section 5)
as a baseline. Since Snappy is a performance optimization, it can
only be compared against the fuzzer on which it was applied; as a
consequence, we have not included other fuzzers in the comparison.

We conducted this experiment on all suitable benchmarks pro-
posed by FuzzBench [19]. We excluded benchmarks that use fea-
tures not supported by Angora and thus our prototype (particularly
assembly and multi-threading), leaving 15 out of the 27 code cover-
age benchmarks. This is similar to other fuzzers with non-trivial
source-level instrumentations, such as SymCC [24]. We extended
the FuzzBench infrastructure to add support for forwarding host
devices to be able to use the kernel-based snapshots we integrated.

All FuzzBench benchmarks are based on a libFuzzer harness,
so they have been manually crafted to minimize the initialization
phase while still allowing the fuzzer to run properly: they open the
test case file, read it, perform some initialization if required, and
then use the test case. With this structure, apart from one single case
to be discussed later, FTF snapshots cannot produce any benefit; all
speedups can be attributed almost entirely to FTM snapshots.

Table 1 shows the results of this experiment: 53% of the bench-
marks experience a statistically significant improvement in the total

number of executions performed in 24 hours, reaching a maximum
of 1.76x, while the remaining 47% do not experience any signifi-
cant variation. No statistically significant performance regressions
were observed. We report the contribution of the early exit opti-
mization separately, highlighting the cases in which enabling it
produces a significant improvement. We normalized over the re-
ported global improvement to hint to the real contribution, but
the concrete values are unstable. We also show additional statistics
concerning execution times of FTF-based and FTM-based execu-
tions, measuring them from the moment the fuzzer requests a new
program instance from the snapshotting system to the moment
the instance concludes its execution. These values are aggregated
using their median but, since the distribution is often multimodal,
they are not fully representative. Despite this, it is evident how
FTM snapshots produce executions that are 37% faster than FTF on
median. In addition, the cost of snapshots remains mostly in the
order of 10 executions and can even cost less than one execution
for slower benchmarks, such as sqlite3_ossfuzz, thanks to our
caching system. Snappy produces up to 36,370 different snapshots
in this experiment; these are often constituted by a small number
of unique positions in the code, but a large number of different
test cases reaching them. Finally, the column showing the “mean
threshold” across each run allows to see for which benchmarks our
dynamic threshold system was triggered, limiting the usage of FTM
snapshots. A higher than average snapshot cost tends to correspond
to benchmarks with high thresholds, which limit the use of FTM
snapshots and thus the advantages of the caching system.

We performed further analysis into the benchmarks which expe-
rienced the highest speedups and confirmed that for most bench-
marks, performance gains are only due to FTM snapshots. FTF
snapshots do not bring major gains because the first operation per-
formed by the libFuzzer wrappers is reading the test case. However,
libxslt_xpath is an exception. This benchmark uses an initializa-
tion function which reads an XML file from disk, so it benefits from
both FTM and FTF snapshots.

In Figure 2, we present an illustrative selection of the plots ob-
tained from our FuzzBench evaluation, showing speed over time;
the remaining plots are in Figure 4. The lcms-2017-03-21 plot
shows the best result obtained in our evaluation; once the fuzzers
have covered all the fast error paths in the first few hours, the
speed settles down on a fairly stable value for both fuzzers, with
Snappy showing almost twice the speed when compared to the
baseline. This behavior is similar in other well performing bench-
marks, such as mbedtls_dtlsclient and openthread-2019. The
libxslt_xpath plot shows instead how Snappy has a significant
advantage in the first few hours, thanks to faster FTF and FTM exe-
cutions, but then settles down on the same speed as baseline when
the executions start to slow down, making the advantage of the FTF
snapshot less significant. This progressive slowdown, present in
other benchmarks as well, can be attributed to the fuzzers picking
progressively less efficient (i.e. slower) test cases they have in their
queue. This behavior is visible in the re2-2014-12-09 plot as well,
albeit here the advantage in the first few hours can be attributed
exclusively to FTM snapshots. At the beginning of the run, both
fuzzers tend to use many FTM-snapshottable mutation operators,
when they can find many conditions to solve; after these condi-
tions are solved or discarded, they switch to doing mostly AFL-like
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Benchmark Speedup (execs) Exit opt. FTF exec. time FTM exec. time Snap. time Unique snap. Mean thres.

freetype2-2017 1.18x (+0.18x) 132 µs 118 µs 16 767 µs 722 396
harfbuzz-1.3.2 1.17x (+0.24x) 168 µs 150 µs 3679 µs 28830 11
jsoncpp_fuzzer 1.04x (+0.01x) 99 µs 72 µs 1427 µs 1474 75
lcms-2017-03-21 1.76x (+0.37x) 915 µs 498 µs 2031 µs 2206 0
libpng-1.2.56 1.06x (−0.02x) 91 µs 66 µs 1563 µs 450 70
libxml2-v2.9.2 1.24x (+0.07x) 122 µs 85 µs 1991 µs 36370 10
libxslt_xpath 1.38x (+0.07x) 90 µs 86 µs 13 855 µs 498 339
mbedtls_dtlsclient 1.62x (+0.26x) 923 µs 97 µs 2199 µs 1539 0
openthread-2019 1.29x (+0.04x) 246 µs 154 µs 1887 µs 1300 0
proj4-2017-08-14 0.82x (+0.03x) 123 µs 115 µs 1391 µs 1030 203
re2-2014-12-09 1.26x (+0.28x) 108 µs 100 µs 1195 µs 26198 166
sqlite3_ossfuzz 1.20x (+0.22x) 10 431 µs 6143 µs 2823 µs 2244 0
vorbis-2017-12-11 0.81x (−0.11x) 2367 µs 1323 µs 2687 µs 1036 0
woff2-2016-05-06 0.98x (−0.20x) 95 µs 98 µs 2727 µs 1327 330
zlib_uncompress 1.10x (−0.15x) 72 µs 57 µs 917 µs 206 119

Table 1: Statistics obtained after 24 hours on FuzzBench, statistically significant results (𝑝-value < 0.05) for speedup are

highlighted. We tested for statistical significance with the Mann-Whitney U test, as proposed by [17]. Execution times show the

data used by the benefit predictor (FTM-supported operators only). All data except the speedup is aggregated using its median.

The contribution of the early exit optimization, in parenthesis, is included in the overall speedup value.

mutations, which are only FTF-snapshottable, making our system
still useful but less performant. Lastly, the vorbis-2017-12-11
plot shows a situation in which, albeit not statistically significant,
Snappy performs slightly worse than the baseline; in this specific
case, the variance in speed, which leads to overlapping confidence
intervals, does not allow our dynamic threshold predictor to revert
back to FTF executions, and the threshold is always left to 0.

6.2 Real-world applications

Given the highly optimized construction of FuzzBench, which
nullifies the advantages provided by FTF snapshots most of the
time, we decided to consider two real-world applications, fuzzing
them with generic wrappers. We chose objdump, since its parent
project, binutils, is commonly used in the literature, and sqlite3,
which allows for a direct comparison with the wrapper present in
FuzzBench. As we shall see later, these two programs are also useful
to showcase how FTF snapshots can provide more (or less) benefits
compared to FTM depending on the characteristics of the target
application—which Snappy can adapt to automatically.

These experiments also show whether Snappy can be used to
save the manual effort to construct a harness for the target pro-
gram. In this context, FTF should be generally more useful than on
FuzzBench. Therefore, we fuzzed objdump without major changes,
and sqlite3 using a generic wrapper, fuzzershell, provided by
the project itself. This wrapper mimics the original program but
simplifies the fuzzing setup, requiring no integration work.

The plots we discuss in our analysis are aggregated in Figure 3.

objdump. Snappy shows a peculiar behavior for this benchmark:
after an initial 6 hours period, its execution speed drops down to
around 1 execution per second. The cause of this behavior lies in
the seeds used for our runs: in order to ensure fairness, we reused
the same seeds provided by OSS-Fuzz [30], which go up to 7 MB
in size. Seeds this large make the fuzzers produce test cases that
are likely to time out and are thus discarded. In Snappy, though,
the increased speed generates 5x fewer timeouts, retaining such

large seeds in the queue. As a consequence, the total amount of
executions decreases by 84%, but the benefit in terms of coverage
is significant because, as discussed later, Snappy is able to use such
large seeds to explore additional portions of the program.

Although not manually optimized like FuzzBench, objdump also
shows improvements mostly due to FTM snapshots; the predictor’s
dynamic threshold is set to 0 for around 97% of the time, which
means the program uses FTM on each run. Manual analysis shows
that the program checks the size of the test case early on, triggering
the FTF snapshot right after main is called. This shows that FTM
snapshots are not only useful for optimized wrappers, but also to
limit the shortcomings of FTF snapshots on normal programs.

sqlite3. In this benchmark, the total amount of executions in-
creases by 1.35x, which is statistically significant and higher than
the 1.20x obtained on sqlite3_ossfuzz. This benchmark is char-
acterized by high variations in speed, probably associated with
different regions of code. Despite this, Snappy is able to perform
better both in the slow portions, in the first few hours, and in the
faster ones, for the remainder of the time. As discussed later, the
advantage is clearly reflected in coverage, where the higher initial
speed introduces a lag between Snappy and our baseline.

The predictor’s snapshot threshold is set to +∞ for 95% of the
time, so it almost exclusively uses FTF snapshots, with FTM execu-
tions concentrated exclusively in the first few hours. This behav-
ior is completely opposite to the sqlite3_ossfuzz benchmark in
FuzzBench, for which the threshold was instead always set to 0. This
shows that, with less carefully crafted harnesses, FTF snapshots
can be extremely useful, even on the same target application.

6.3 Influence on coverage

The metric most commonly used in the literature to evaluate new
coverage-oriented fuzzers is edge coverage. The reason is that cov-
erage is considered a proxy metric for the actual goal of fuzzers,
which is finding bugs. Trivially, if the code containing a bug cannot
be reached, the bug cannot be discovered. The advantage of using
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Figure 2: A selection of the speed plots obtained from our FuzzBench evaluation. The line plots show the median value in our 16

runs and the confidence intervals are 95% on the median. The plots have been smoothed with a 1-hour window for readability.
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Figure 3: Coverage and speed plots for objdump and sqlite3.
The line plots show the median value in our 16 runs with a

95% confidence interval. Interestingly, the speed results for

objdump are influenced by Snappy being too fast, allowing

large seeds to not time out but instead yield more coverage.

coverage over the number of unique bugs found is that it is clearly
defined, more granular, and also more easily measurable.

Snappy improves fuzzing speed. As such, compared to the base-
line, the same coverage can be achieved in less time (and conse-
quently, using less power). Fuzzers achieve much coverage early on,
when exploring the main paths in the target, and progress slowly
as they need to flip the remaining more difficult branches until a
plateau is reached (i.e., the fuzzer is no longer able to make sig-
nificant progress in bounded time). As such, our approach is most
effective in increasing coverage during the progression towards the
plateau, but cannot improve it after the plateau is reached.

FuzzBench. Most of the benchmarks are small libraries which
reach their coverage plateau very quickly with a large initial in-
crease; they thus cannot strongly benefit from increases in speed.
Only one of the benchmarks with significant speed improvements
also exhibited significant coverage differences at the end of the
24 hours. In 38% of the cases with significantly increased speed,
though, Snappy was able to gain a statistically significant coverage

advantage at some point during the 24 hours, before the baseline
was able to reach the plateau; in the remaining 68%, the speed
increase does not seem to have significantly influenced coverage
progress. Among the cases in which no significant speed differ-
ence could be obtained, there are a few benchmarks (38%) in which
the baseline performs instead better at some point, mainly due to
Snappy performing slightly worse, albeit not significantly. Among
these, harfbuzz-1.3.2 is peculiar because the baseline reaches a
higher coverage plateau; we attribute this to a worst case interac-
tion between our speed changes and the scheduling algorithm of
the fuzzers. In the remaining 62% of the cases without significant
speed differences, coverage does not appear to significantly change.

Real-world programs. Both objdump and sqlite3 present signif-
icant coverage increases, 31% for the former and 3% for the latter,
due to an increased execution speed. In Figure 3, the correlation is
clearly visible for sqlite3, where higher speed introduces a lag be-
tween Snappy and our baseline. For objdump, the effect is stronger
but less evident. Fewer timeouts allow to retain more interesting
test cases and thus explore the program more in depth.

7 DISCUSSION

In this section, we discuss limitations of our current Snappy pro-
totype and possible future improvements that we believe would
further increase the performance of our system in specific cases.

Similarity set awareness. Since the snapshot policies proposed
by Snappy support all common mutation operators without modifi-
cations, they can be adapted to other fuzzers as well. We believe,
however, that making DTA-agnostic fuzzers (e.g., AFL++) aware
of similarity sets will allow them to partially benefit from FTM
snapshots. Since taint information is not available, it is necessary
to define a new policy for the creation of similarity sets; the DTA-
agnostic mutation operators should then be modified to use them.
The use of pseudo-DTA methods, such as the one proposed by
RedQueen [5], should allow to define similarity sets that provide
comparable performance. Another possibility is to divide the test
case arbitrarily (e.g., in blocks) and then use or discard snapshots
based on their performance or on their position. Both these policies
are less precise, but should still provide performance improvements.

Limitations of the current implementation. Our prototype uses
compiler instrumentation, and therefore requires source code for
the program to be fuzzed, as is common among greybox fuzzers.



ACSAC ’22, December 5–9, 2022, Austin, TX, USA Elia Geretto, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

In addition, our prototype supports linking against uninstru-
mented libraries, but, since it is based on DFSan [? ], it inherits its
limitation of being able to track taint for these libraries only when
appropriate wrappers are provided. When this is not the case, the
FTM placement step may misplace the snapshot if the first tainted
memory read is performed inside an uninstrumented function.

In practice, support for tainting in external library functions is
mainly an issue for libc, and, following DFSan, we added appropri-
ate wrappers for the most relevant functions. For example, memcpy
is wrapped to propagate taint, and our memcmp wrapper determines
whether the result depends on tainted bytes from its input buffers,
and triggers a snapshot if it is. Only functions that may take point-
ers to tainted data are affected, and only if they either propagate
tainted data or can semantically change the flow of the program.

Other uninstrumented external libraries are also supported, but
receive no special handling in our evaluation. Our rationale is
that greybox fuzzers typically require instrumentation to track
coverage, so that such libraries should not be the fuzzing target
and are therefore unlikely to handle input data in ways that are
relevant for the result. A missed snapshot may lead to a partially
corrupted program execution, but this is not harmful in the context
of fuzzing as, at worst, it wastes a reduced number of executions
(and only if not immediately detected). When such failed snapshots
are detected, Snappy simply falls back on FTF snapshots. Finally, if
an external library represents a worst-case scenario for this issue, it
will be easily detected due to spurious crashes and reduced coverage
progress, hinting that additional wrappers should be added. This
has not been the case during our evaluation.

While Angora is affected by implicit flows, FTM snapshots are
not. In order to generate an implicit flow, tainted data need to be
loaded from memory; this operation, according to our FTM policy,
triggers a snapshot, so no implicit flow is possible.

8 RELATEDWORK

Much recent work in the field of fuzzing focuses on mutation-based
(greybox) fuzzers, which commonly rely on a feedback function to
select and mutate a set of test cases deemed interesting. The most
commonly used feedback function is code coverage [37], but sev-
eral efforts also propose to direct fuzzers towards specific locations
in the program using distance metrics as feedback [8, 10, 13, 22].
Among coverage-guided fuzzers, prior work focuses on improving
various elements of the fuzzing loop. For instance, there is work
on improving both test case [9, 15] and mutation operator [18]
scheduling. Most efforts, however, focus on improving the qual-
ity of the produced test cases by changing the mutation operators
themselves. For instance, some solutions focus on improving per-
formance for highly structured grammars [4, 7], others rely on
machine learning to help guide the mutation operators towards
solving branch conditions [31]. Moreover, several solutions propose
to improve mutations by means of dynamic taint analysis (DTA),
using either blackbox [5] or whitebox [11, 12, 26, 34] flavors of
DTA. Our work also relies on whitebox DTA, but exploits it for
the purpose of placing snapshots, instead of improving mutation
operators. Beyond DTA, several efforts propose to integrate more
heavyweight techniques, such as concolic execution [24, 25, 33, 36]
or program transformations [23] to improve fuzzing performance.

Speed is one of the most important properties in a fuzzer and thus,
like Snappy, other solutions focus on improving it. The operating
system primitive proposed by [35] aims at reducing the time spent
in the operating system before starting a new execution; we build
upon that idea by integrating its modern reincarnation [14] in
our prototype. Nonetheless, our snapshot placement technique is
orthogonal to the snapshot system used and thus could further
benefit from additional work in this direction. In the context of
directed fuzzing, Beacon [16] proposes a solution that removes
useless computation by cutting executions when they stray away
from the target specified. This solution, however, is tightly coupled
with directed fuzzing and thus cannot be adapted to coverage-
guided fuzzers. Moreover, our system could be used in combination
with Beacon (and other similar fuzzers) in a directed fuzzing context
as well, allowing it to achieve even better results.

Other solutions have sought to remove initialization overhead
when fuzzing complex targets through the use of a hypervisor.
Nyx [27, 29] uses lightweight snapshots to restore VMs quickly;
these snapshots, however, are taken before its agent operating
system starts to parse the input. This solution is thus position-
ally equivalent to taking a snapshot after the dynamic loader has
completed its tasks when fuzzing a program. Agamotto [32] goes
further and proposes to move snapshots just before the first mu-
tation performed in a test case formed by a series of system calls,
removing redundant computation, as we do. This technique, how-
ever, is strongly dependent on the fact that system calls are executed
in sequence when testing operating systems; this is not the case for
general programs and thus our novel snapshot positioning policies
do not rely on this assumption. Finally, FIRM-AFL [38] and Snap-
Fuzz [3] propose to take snapshots wrapping networking functions,
making them similar to our FTF snapshot policy. Our policy, how-
ever, does not snapshot on any interaction, as FIRM-AFL does, but
only on those that copy data produced by the fuzzer into memory
or check the test case size. Furthermore, FIRM-AFL and SnapFuzz
do not track tainted data in memory, as our FTM snapshots do.

9 CONCLUSION

We presented Snappy, a system to speed up fuzzing by aggressively
pruning redundant computation using adaptive and mutable snap-
shots. Snappy uses two novel snapshot positioning policies, FTF
and FTM snapshots, to place snapshots late in the execution trace;
the most convenient policy is selected dynamically, by examining
run-time statistics.

We evaluated Snappy using FuzzBench and two real world pro-
grams: sqlite3 and objdump. Our evaluation demonstrated that
both our snapshot policies are beneficial—well complementing each
other on programs with different characteristics—and that our sys-
tem can dynamically adapt to select the best technique and score
gains for common fuzzers and input mutation operators.
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Figure 4: Speed plots obtained from our FuzzBench evaluation. The line plots show the median value in our 16 runs and the

confidence intervals are 95% on the median. The plots have been smoothed with a 1-hour window for readability.
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