
DangZero: Efficient Use-After-Free Detection
via Direct Page Table Access

Floris Gorter
f.c.gorter@vu.nl

Vrije Universiteit Amsterdam

Koen Koning
koen.koning@vu.nl

Vrije Universiteit Amsterdam

Herbert Bos
herbertb@cs.vu.nl

Vrije Universiteit Amsterdam

Cristiano Giuffrida
giuffrida@cs.vu.nl

Vrije Universiteit Amsterdam

ABSTRACT
Use-after-free vulnerabilities remain difficult to detect and mitigate,
making them a popular source of exploitation. Existing solutions in-
cur impractical performance/memory overhead, require specialized
hardware, and/or guarantee only protection, but not detection.

In this paper, we propose DangZero, a new solution to detect
use-after-free vulnerabilities as they occur. DangZero builds on a
traditional page protection and aliasing scheme, where objects are
made inaccessible after a free, and subsequent accesses are imme-
diately detected. In contrast to prior solutions using alias-based
detection, DangZero relies on direct page table access in ring 0 to
provide a much more efficient implementation. The key idea is
that, by giving the program’s allocator direct access to the page
tables, we can efficiently manage and invalidate vulnerable objects.
To safely implement this, we build upon a unikernel-like design,
where virtualization provides ring-0 (guest-mode) access, isolation,
as well as compatibility with existing Linux programs. Moreover, we
show direct page table access serves as an efficient building block
for garbage collection-style alias reclaiming. Doing so provides
the ability to safely reuse freed areas and address the scalability
issues plaguing state-of-the-art alias-based solutions. Our experi-
mental results confirm that DangZero provides accurate detection
guarantees with significantly lower overhead than competing state-
of-the-art solutions (e.g., 18% saturated throughput degradation on
long-running programs such as the Nginx web server).

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Memory safety, Use-after-free detection, Page permissions

ACM Reference Format:
Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2022. Dan-
gZero: Efficient Use-After-Free Detection via Direct Page Table Access. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560625

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560625

1 INTRODUCTION
Temporal memory errors remain an important concern in the pro-
tection of computer systems against bugs and exploits. Use-after-
free (UAF) bugs were ranked #7 in the CWE top 25 of the most
common and impactful issues in software [40]. Additionally, Mi-
crosoft reports that UAF bugs are the second most common root
cause of vulnerabilities and continue to be a preferred target for
exploitation [39]. Approaches to defend against such threats can
be classified as offering immediate detection or (merely) protection
against exploitation. Providing detection of bugs is important in
both offline (e.g., testing) and online (e.g., sampling [51]) deploy-
ment scenarios, as well as for bug triaging. Unfortunately, existing
solutions in either category are problematic.

Guaranteeing UAF protection is typically more efficient than im-
mediate detection and existing protection systems attempt to mini-
mize their performance impact by means of a variety of techniques:
type-safe memory reuse [5, 52] (which, however, can only preserve
type safety), reference counting [50] (which, however, is not applica-
ble to arbitrary C/C++ programs), one-time allocation [54] (which,
however, cannot bound memory usage), and garbage collection-
style (GC) solutions [4, 19, 23, 34]. While GC-style solutions have
been gainingmomentum for their reported efficiency, recent studies
evidence nontrivial, fundamental costs with GC-style techniques—
often hiding behind concurrency and generous provisioning of
memory/computational power [14]. Further drawbacks are that
many solutions cannot protect against exploits that do not rely
on memory reuse [5], while most of the compiler-based solutions
(with exceptions [4, 5, 19, 54]) cannot handle unmodified binaries.
Most importantly, none of the solutions in this category can provide
strong UAF detection guarantees.

Most UAF detection-focused systems rely on compiler instrumen-
tation to track and invalidate pointers to freed objects [30, 49, 53, 55].
Despite dedicated optimizations [53], such solutions still incur non-
trivial performance overhead. Less costly solutions rely on special
hardware support [22, 57] (limiting deployability) or on object
IDs [9, 13, 15, 22, 25, 41] (or poison values [47]) to detect UAFs
(only) until a predetermined number of memory reuse events oc-
curs (limiting security guarantees). Here also, most compiler-based
solutions cannot handle unmodified binaries.

Nonetheless, binary-compatible UAF detection systems are de-
scribed in literature [17, 18]. Such solutions create a new virtual
page (alias) for each memory allocation and map it to the same
physical page as the original object. As a result, every object re-
ceives a unique (unused) pointer, and the object (and its pointers)
can easily be invalidated upon free by revoking the page mapping.
Unfortunately, such alias-based solutions rely on the kernel for page
protection and aliasing, and incur high overhead due to the extra

1

https://doi.org/10.1145/3548606.3560625
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3560625

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida

syscalls and kernel administration costs. Moreover, state-of-the-art
solutions [17] still suffer from impractical scalability issues due to
virtual memory address space exhaustion—as we will show, this
occurs in a matter of days on a heavily loaded web server.

In this paper, we introduce DangZero, an efficient, scalable, and
binary-compatible UAF detection system. The key idea is to rely
on direct page table access in ring 0 (i.e., the highest privilege level
normally only running OS kernels) to implement a traditional alias-
based scheme in a much more efficient way. Drawing inspiration
from modern unikernel-like designs [29], DangZero relies on virtu-
alization extensions and a privilege backend such as Kernel Mode
Linux (KML) [36] to provide direct access to the page tables. This
strategy allows us to transparently run (and isolate) arbitrary user-
space programs in ring 0 guest mode, while safely providing them
with direct access to their own (guest) page tables.

We show that directly accessing page tables can crucially make
alias-based UAF detection systems practical in two ways. First, by
granting the program’s memory allocator page table access, it can
efficiently manage aliases by directly updating page table mappings.
Doing so eliminates the need for operating system involvement and
the corresponding (syscall and kernel administration) overheads.

Second, page tables already track important metadata about the
virtual memory address space of the program and can also accom-
modate extra application-specific metadata.We use this observation
to design an efficient alias reclaiming system and address the vir-
tual memory address space exhaustion issues of prior alias-based
solutions [17]. The goal is to allow safe reuse of virtual addresses,
once we confirm that dangling pointers to the object (alias) no
longer exist. Our design is similar, in spirit, to that of prior GC-style
solutions [4, 19], but with two crucial differences. First, DangZero’s
metadata management is uniquely efficient, since it can piggyback
and expand on the metadata already present in the page tables (e.g.,
the present bit pinpointing the resident pages to scan for dangling
pointers). Moreover, since DangZero reclaims virtual aliases rather
than objects in physical memory, our reclaiming strategy is not
prone to the typical performance/memory tradeoff of GC-style tech-
niques [14]. Indeed, as we shall see, our alias reclaiming strategy
is very efficient, allowing DangZero (a detection system) to out-
perform even state-of-the-art GC-style protection systems [4, 19]
on long-running benchmarks (which commonly feature frequent,
short-lived allocations), without having to resort to memory over-
provisioning or concurrent reclaiming on spare CPU cores.

We have evaluated DangZero on standard benchmarks (SPEC
CPU 2006 and 2017) and long-running application benchmarks (the
Nginx web server in particular). On SPEC CPU 2006, DangZero
reported a geomean performance overhead of only 16% (and 22% on
SPEC CPU 2017) compared to 40% for the state-the-art alias-based
UAF detection system [17]. On Nginx, DangZero reported saturated
overheads as low as 11-18%, significantly lower than state-of-the-
art UAF protection/detection systems, with consistently modest
(and bounded) memory overhead.
To summarize, we make the following contributions:

• A new approach to detect use-after-free bugs based on alias
allocation with virtualization-based direct page table access.

• A novel solution for alias reclaiming.
• A prototype of DangZero using KML as a privilege backend.

in t * ptr = malloc(s i z eo f (in t));
free(ptr);

in t b = *ptr;

Listing 1: Use-after-free example

• An evaluation to show that DangZero significantly outper-
forms prior detection systems and even state-of-the-art GC-
style protection systems on long-running benchmarks.

• Code available at: https://github.com/vusec/dangzero

2 BACKGROUND
2.1 Use-after-free
Use-after-free (UAF) bugs are temporal memory errors present
in unsafe languages such as C and C++, which arise due to heap
allocated objects being dereferenced after already being freed. These
bugs are possible since (so-called dangling) pointers to freed objects
remain intact even if the pointed memory location is no longer
valid. Attackers typically exploit UAF bugs and the corresponding
dangling pointers by forcing memory reuse after the free, but before
the use. However, depending on the allocator design, exploitation
without memory reuse (with allocator metadata playing the role of
the target object) is possible [5]. Listing 1 shows a trivial example
of a UAF bug. The temporal nature of these bugs makes them hard
to detect, both visually in the code as well as through program
analysis, and many mitigation designs aimed to neutralize UAF
bugs suffer from significant (runtime/memory) overhead. In this
paper, we show such cost is not fundamental and direct page table
access can unlock an efficient and scalable alias-based solution.

2.2 Page tables
Page tables are a software-maintained data structure that is used by
the memory management unit (MMU) of the CPU to describe how
to map virtual to physical memory. On most common architectures,
page tables are stored as a hierarchical tree, where certain bits of the
virtual address are used to select the entry in the respective level
of the page table. A page table entry (PTE) stores the address to the
next level of the tree, or (for the last level) the result of the address
translation. Additionally, PTEs store a limited number of metadata
bits, such as permissions of that mapping and whether the entry is
valid (“present”). Finally, each PTE contains a number of bits that
are ignored by hardware, and thus can be used by the operating
system for additional information. Most 64-bit architectures use
4-level page tables, each table consisting of 512 entries, yielding
a 48-bit (256 TB) virtual address space. Some modern CPUs also
feature 5-level page tables, but for the remainder of this paper we
assume a 4-level page table structure for simplicity. Many different
names exist for referring to the different levels of these structures;
for this paper we simply refer to them as L4 through L1 (with L4
the root/first table, and L1 the leaves/last level).

Typically, each process has its own set of page tables, describing
the address space of that process. Linux splits the available address
space in half, giving the bottom half to user space and keeping the
top half for its own data. This means each user process has 128 TB
of virtual addresses available. To request new mappings, or change
existing mappings, the process (and its memory allocator) issues
system calls such as brk, mmap, and mremap. On top of the page

2

https://github.com/vusec/dangzero

DangZero: Efficient Use-After-Free Detection via Direct Page Table Access CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

tables, Linux also maintains its own data structures, containing
information for each consecutive virtual memory area (VMA).

When running a virtual machine (VM) using hardware virtual-
ization extensions, there are two levels of page tables: the guest
page tables, and the extended page tables (EPT) on the host. The
former behave exactly as described above, and give the guest the
illusion of running directly on the hardware. The EPT is managed
by the hypervisor and is similar to normal page tables, except it
translates every guest-physical address to a host-physical address.

2.3 Access to privileged CPU features
To achieve direct page table access, DangZero requires access to
privileged features normally reserved for ring 0. The Dune [6]
project presented a practical implementation through the use of a
lightweight virtual environment. In particular, the application runs
in ring 0 (guest mode) of a specialized “virtual process” environment.
This provides the application access to all privileged features (e.g.,
guest page tables), while still being isolated from the rest of the
(host) system by the hypervisor.

Dune used a small library operating system (libOS) running in
the guest alongside the application, to manage basic kernel tasks so
that unmodified Linux binaries could run. Additionally, a specialized
(KVM-based) hypervisor mapped system calls issued by the guest
via VM exits to Linux syscalls on the host.

Of similar spirit is the Kernel Mode Linux (KML) [36] project,
which allows programs to run in ring 0 alongside the Linux kernel.
KML has the advantage of not requiring expensive VM exits for
every system call a la Dune. Similar to Dune, KML still requires a
virtual environment for isolation, that is to protect the rest of the
system. The resulting design effectively transforms Linux into a
libOS and the process into a unikernel—and recent application opti-
mization work has shown KML can be efficiently used as such [29].

3 THREAT MODEL
We assume a standard threat model, with an attacker seeking to
exploit arbitrary use-after-free vulnerabilities in a victim binary
program (written in an unsafe language), for the purpose of in-
formation disclosure, privilege escalation, etc. We consider arbi-
trary use-after-free exploits regardless of whether memory reuse
and other exploitation techniques (e.g., memory massaging) are
involved. We assume the program is free from other vulnerabilities
(e.g., buffer overflows) or otherwise hardened against them with
orthogonal mitigations.

4 DANGZERO
DangZero protects against UAF bugs immediately as they occur, by
creating distinct virtual addresses for each heap-allocated memory
object. Whenever an object is freed, its memory is rendered inac-
cessible by invalidating the virtual memory mapping. This is done
by means of the page protection flags and renders further (UAF)
accesses invalid. To reduce physical memory overhead, we allow
objects to still share physical pages. Since the smallest granularity
of mappings is at the page level, we thus create new and unique
aliases for every allocated object, which can be invalidated on free.

Figure 1 provides an overview of the main components of Dan-
gZero and their interactions. At the core of DangZero lies an overlay

Privilege backend

Operating System (Host ring 0)

Guest ring 0

malloc() 0xff96000120
(alias)

User application

Alias reclaimer

Overlay allocator

Virtual memory address space

Process
memory Aliases

0x500120
(canonical)Default

memory
allocator

0xff96000120
(alias)

libc_malloc()

page
tables

Figure 1: Overview of DangZero’s components.

allocator, which serves as an extension to the default memory al-
locator (e.g., glibc) and has direct access to the page tables of the
running process. Heap allocation requests are intercepted such that
alias pages can be created and returned to the user. Heap dealloca-
tion requests, in turn, are intercepted to invalidate the alias map-
pings. The privilege backend provides access to restricted features,
direct page table access in particular. DangZero does not require
instrumentation of the program, nor of the underlying allocator
and thus works on off-the-shelf binaries.

Overlay allocator. DangZero’s overlay memory allocator can
be viewed as a proxy between a user-space program and the de-
fault memory allocator. Upon request of a memory allocation (e.g.,
malloc), DangZero first relays this request to the default memory
allocator. The default allocator may request virtual (and physical)
memory from the operating system (typically via brk or mmap) and
ultimately returns the virtual address of the allocated heap slot
(which we refer to as the canonical address of the object) to our
overlay allocator. Then, our allocator creates one or more alias
pages in an unused area of the virtual memory address space, com-
puting what we refer to as the alias address of the object. Since our
allocator has direct access to the process page tables, it can directly
and efficiently create these alias mappings. Finally, we transpar-
ently return the corresponding alias address to the user program,
which uses this address to refer to the allocated object as usual,
unaware this concerns an alias.

When the program frees the object, we perform similar instru-
mentation. Upon interception of a free (or equivalent) call, we first
invalidate the alias mapping directly in the page tables. We then
compute and pass the canonical address of the object to the original
free so its physical memory can be reused by the default allocator.

Alias reclaiming. Providing every object with its own unique
alias address would eventually lead to virtual memory exhaustion.
Even on the large virtual address spaces of modern systems, ex-
haustion can occur within days of operation on heavily loaded
server programs. To address this challenge, DangZero relies on an

3

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida

obj-1 obj-2 obj-N obj-1 obj-2 obj-N

obj-1

obj-2

obj-N

Canonical virtual page Physical page

Alias virtual pages

Figure 2: Page aliasing: one virtual alias page per object.

alias reclaimer to enable safe reuse of alias addresses. The reclaimer
periodically marks invalidated (i.e., previously freed) areas of the
alias space as reusable for future alias creation, if it determines
(dangling) pointers to it no longer exist. This component is similar,
in spirit, to a (conservative) garbage collector, but only reclaims
virtual (rather than physical) memory and is tightly integrated with
the overlay allocator as well as the page table data structure.

In the remainder of this section, we describe the operation and
components of DangZero in greater detail.

4.1 Temporal safety through page protection
At the core of DangZero lies the idea of using page protection as a
mechanism to prevent and detect use-after-free errors. By removing
access from the application to deallocated memory, the memory
management unit (MMU) in hardware will automatically raise an
exception when invalid accesses are detected. The MMU, however,
operates on a page (typically, 4096 bytes) granularity. Placing every
object on its own (physically backed) page would lead to significant
memory overhead caused by fragmentation.

Therefore, DangZero builds on the idea of aliasing [18], where
each object has its own virtual alias, but multiple objects share
the same underlying physical page. Figure 2 visualizes how the
different pages relate to each other. We refer to the virtual page
returned by the default memory allocator as the canonical page.
These pages can contain multiple memory objects by design (up to
128 objects on a 4K page). The physical page backing the canonical
page matches the objects. Then, for each individual object, there is
a distinct alias page, with the in-page offset matching the canonical
page. If the original allocation spans multiple pages, the resulting
object will have the same number of corresponding alias pages.

Upon deallocation of an alias, we require the corresponding
canonical address, so that we can initiate the deallocation process
of the default allocator and free up the physical memory. For this, we
pad every memory allocation with the canonical address pointer.
In practice, this means that we change every malloc(n) call to
malloc(n + sizeof(void*)).

4.2 Creating and invalidating aliases
Virtual address mappings are maintained in the process page tables,
which are managed by the operating system kernel. Normally, for
a process to update mappings, it thus needs to go through system
calls, which is an expensive operation. Operating systems such as
Linux are also not built for creating (large amounts of) custom

mappings, and thus are restrictive in what can be set up. Moreover,
kernel memory usage often explodes because of the metadata kept
for each alias mapping, such as the VMA data structures.

With DangZero, we can directly modify the page tables from
our overlay allocator instead, completely outside of the control
of the operating system. DangZero takes over an unused area of
the virtual address space, that is never touched by the kernel, and
directly writes into the page table page entries corresponding to
that area. To facilitate this access to (normally) restricted resources,
our privilege backend provides safe access. The design of DangZero
is agnostic to the exact mechanism used, but in general it must
support direct read and write access to page tables and allow for
TLB flushing, while at the same time ensuring safety and isolation to
the rest of the system. Our primary backend uses a guest running
Kernel Mode Linux (KML) for transforming Linux into a libOS;
Section 5.1 provides more details on these underlying mechanisms.

In order to create an alias page upon request of a memory al-
location, we have to consider the effects of demand paging. Since
Linux applies demand paging on its memory system, heap allo-
cations do not have physical backing until they are actually used.
However, we cannot create alias mappings without knowing the
physical address of the allocation. Therefore, the allocator touches
the canonical page in order to force physical backing for the mem-
ory object, after which we can set up the page tables to ensure the
alias page points to the same physical page. We do not observe
overhead penalties from the forced population of the pages in prac-
tice, since the pages are normally used by the default allocator or
shortly after the allocation anyway. If this approach were to intro-
duce difficulties for certain workloads, an alternative design would
use a custom page fault handler, such that alias pages are created
as soon as the heap allocations receive physical backing.

4.3 Alias reclaimer
To support long-running applications that may exhaust the alias
space, DangZero introduces the alias reclaimer component. The
main goal of this component is to allow safe reuse of previously
freed alias pages. We deem an alias page safe for reuse if no refer-
ences (i.e., pointers) exist to the object associated to the alias page.
Conversely, if there once existed a large object of 10 pages, that is
now freed, and a (dangling) pointer exists anywhere in the program
to any of these 10 pages, none are considered safe for reuse.

The main design goal of the reclaimer, besides safe reuse, is
to be lightweight. The reclaimer runs infrequently, and as such,
its normal operation (when a cleanup is not needed) should be
minimal in terms of performance andmemory overhead. Our design
is therefore inspired by that of conservative garbage collectors
(GCs) [10], but is tailor-made for the environment of DangZero.
Unlike a traditional GC, the reclaimer is not critical for the physical
memory overhead of the system. The alias reclaimer automatically
runs when a predefined watermark on the number of invalidated
pages is reached. Since we can never reclaim memory that is still
in use (i.e., not freed), the watermark excludes any such pages.

Similar to a conservative GC, the reclaimer consists of amarking
and a sweeping phase. During marking, all memory and registers of
the program are scanned for possible pointers to the alias space. For
any pointer that is found pointing to a freed alias object, we mark

4

DangZero: Efficient Use-After-Free Detection via Direct Page Table Access CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

L2 page table

Paddr ign

0x1234 1

0xabcd 0cpt

0ca

L1 page table

Paddr ign

0x5400 1
0x5401 1

0inv
0inv

objend 0inv
0
0

objend 0inv
0x7820 1

.
.
.

I O I O I O I O I O

1 0 1 0 1 1 0 0 1 0
...

Compressed table

Figure 3: Alias reclaimer metadata in the page tables.

that object as still referenced. Afterwards, during the sweep, we
iterate over all freed objects in the alias space, and return all objects
that are not marked to the alias freelist of our overlay allocator. The
reclaimer ignores all the nonfreed objects, and objects are zeroed
on free to avoid cyclic dependencies when marking [19]. Zeroing
objects also provides protection against leaking data from unini-
tialized reads, when a physical page is reused across allocations.

Currently the mark and sweep phases require temporarily stop-
ping the world, which means the target application is essentially
paused. This is a common paradigm in garbage collection to obtain
a consistent view of the program’s memory [10]. There are further
possible optimizations, such as concurrent and parallel marking
and sweeping. In particular, direct page table access enables opti-
mizations such as fast dirty bit scanning [6]. However, we opted
for the much simpler stop-the-world approach, as the overhead
of reclaiming was low enough that we did not feel more complex
concurrent reclaiming was a feature to prioritize.

The reclaimer must keep track of certain metadata in order to
perform its mark and sweep operations correctly. First, it needs
knowledge on the state of each alias page: whether it is available
(available to create new aliases), in-use (in use by a live object), or
invalidated (part of a dead object that was explicitly deallocated
with free()). Additionally, the reclaimer needs to know where
object boundaries were for invalidated objects, since a pointer to
anywhere in the object excludes reuse of any of its pages. Finally,
during the marking phase, the reclaimer needs to remember which
objects were marked for the sweep phase.

The reclaimer stores all of this information in the page tables
themselves, resulting in virtually no memory overhead, as shown
in Figure 3. We obtain this storage for free, because invalidated
alias pages (i.e., after a call to free()) are set to nonpresent in their
respective page table entries (PTEs), meaning all other bits in the
PTE are unused and ignored by the hardware. Therefore, we use
one of the PTE bits to distinguish between available and invalidated
entries. Additionally, we use another bit to mark the end of each
object. Thereby, object boundaries can be reconstructed by looking

for consecutive PTEs with this bit not set, followed by one where it
is. Figure 3 shows on the right an L1 page table with several PTEs,
where the present bit is indicated by the P column, the invalidated
bit is stored in one of the ignored bits, and so is the bit indicating
the end of objects. The figure depicts a mix of in-use objects (e.g.,
the first two entries), invalidated objects (entries 3-5 and entry 8),
and available entries (entries 6-7).

Page table reclaiming and compression. If any of the 512 entries
of a page table is still a valid mapping (i.e., the present bit is set), the
whole page table needs to be kept around, and thus it provides free
storage space for ourmetadata bits. However, themoment all entries
are nonpresent (i.e., available or invalidated), keeping it around
only for the metadata bits wastes a lot of space. A 4K page table has
512 64-bit entries (each describing a page), but our metadata only
requires 2 bits per entry. As a result, we compress page tables into
128 bytes of data the moment all entries are nonpresent and free
the original page table. We can place 32 of these compressed page
tables into a single 4K page and manage these chunks of memory
with a slab allocator [11]. We then point the L2 page table to this
compressed entry, and set a special bit in the page table entry to
indicate its presence (cpt in Figure 3).

On top of this, we identify two common states a page table can be
in, which allow for further compression. Often, a (compressed) page
table is completely filled with invalidated objects. Additionally, a
page table often only contains entries where every page is a separate
object or every page belonged to the same large object (i.e., all or
none of the object-end bits are set, respectively). In all of these cases,
the entire compressed page table (128 bytes) is compressed into a
single bit that is stored in the higher-level page table (ca in the last
L2 entry in Figure 3). As we will show in Section 6, compression
drastically reduces the memory overhead of DangZero.

5 IMPLEMENTATION
We implement DangZero as a shared library that overlays the de-
fault memory allocator via LD_PRELOAD. Additionally, DangZero
requires a backend to be available for direct page table access, which
we describe in detail in the following section.

5.1 Privilege backend
One of the critical components of DangZero is its privilege backend,
which is responsible for providing direct access to privileged kernel
features from the (user-space) allocator. The ability to directly mod-
ify page tables (and issue corresponding TLB flushes) is essential
for the performance of our system.

For this, DangZero’s primary backend builds on top of Kernel
Mode Linux (KML) [36], a Linux kernel modification that enables
running user-space applications in kernel mode (ring 0). This ef-
fectively transforms Linux into an efficient unikernel [29]. It also
provides the application with all privileges on the system, allowing
it to call into kernel code (e.g., alloc_page for allocating physical
pages) and write to any memory. However, KML still remains Linux
under the hood, thus benefiting from all existing Linux drivers and
supporting all existing Linux binaries.

However, providing arbitrary user-space programs with kernel
privileges is inherently unsafe: a bug or vulnerability in the program
can affect or corrupt any other program and user on the system.

5

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida

ffff800000000000 ffffffffffffffff← 128 TB →

Direct mapping physical mem

hy
pe

rv
is

or

vm
al

lo
c

K
A

SA
N

ke
rn

el
 te

xt

Figure 4: Kernel-space virtual memory layout.

Like other unikernel systems, we therefore run our system inside a
(lightweight) virtual machine (VM), which isolates the guest from
the rest of the system. By dedicating the guest system to an indi-
vidual process, we consider a single security domain, and hence
an attacker abusing orthogonal vulnerabilities cannot exploit page
table access to compromise other security domains (e.g., other ap-
plications or the host). Additionally, this setup can provide higher
performance than a bare-metal baseline, since the KML kernel can
be tweaked specifically for running a single application on virtual-
ized hardware [29]. DangZero does not include such optimizations,
to fairly evaluate the overhead introduced by its design.

For DangZero, we used the latest Linux kernel with an available
KML patch, i.e., v4.0. We applied two patches to the KML kernel
such that it can properly operate with the latest LTS version of
Ubuntu at the time (20.04). The KML project introduced a patch to
glibc 2.11 to change system calls into direct calls, which we port
to glibc 2.31 (the default for the used OS). The modern version of
glibc allows us to use the default gcc version on our OS (9.4.0).
For some features, we require access to kernel data structures (e.g.,
iterating through VMA structs). This is conveniently implemented
in a kernel module, which, thanks to KML, we can call directly from
our allocator via a regular function call.

5.1.1 Alternative backend: Dune. Next to KML, we have also imple-
mented an alternative backend for DangZero to demonstrate the
wide applicability of its design. For this purpose, we chose Dune [6],
a hypervisor and libOS that is aimed at granting user applications
access to privileged hardware features. Our Dune-based DangZero
prototype showed almost identical performance as KML for the
SPEC benchmarks. However, on system call intensive applications
(e.g., Nginx), the Dune baseline itself reports a significant perfor-
mance overhead (up to 60%), because Dune has to translate system
calls into far more expensive VM exits, resulting in higher overall
overhead for DangZero/Dune. As such, the remainder of this paper
is solely evaluated using DangZero’s KML backend.

5.2 Alias page tables
While KML grants our allocator direct access to kernel memory
such as the page table data structures, it cannot easily take full
control of them. In particular, Linux itself is unaware of DangZero,
and will overwrite any changes our allocator would make in user-
space mappings. Instead, DangZero operates in a normally reserved
area of the Linux kernel address space (untouched by the kernel by
design). This strategy has two advantages: it does not require kernel
modifications to allow for page table access sharing and it does not
reduce the amount of virtual memory available to userland.

Figure 4 shows a (simplified) kernel-space virtual memory layout.
The kernel reserves a virtual memory area of 64 TB for the direct
mapping of all physical memory. Since most machines have at most

a few hundred gigabytes of RAM, most of this area is not in use.
Therefore, we can reserve a large part of this unused area to host
our alias page tables. The 64 TB of direct mapping corresponds
to the highest level (L4) page table entries 273 to 400. Assuming
that the system uses up to 27 x 512 GB physical memory at most (a
generous overapproximation for the foreseeable future), this leaves
entries 300 to 400 available for our virtual alias pages. This area
can host up to 50 TB of virtual alias space, which corresponds to a
maximum of 12.5 billion concurrent 4K alias pages.

5.3 Supporting fork
The downside of bypassing the kernel when creating alias mappings
directly in the page tables of a process is that the kernel is not aware
of these pages when executing operations such as fork. The fork
system call creates a child process where the pages of the parent
and the child are shared. Upon modification of a shared page, the
copy-on-write (CoW) technique ensures a copy of the page is used.
Unfortunately, the alias pages are not copied over to the page tables
of the child process, and even if they were (e.g., by being present
in the normal kernel data structures such as VMAs), they would
wrongfully remain aliased to the physical pages of the parent.

The intuition to solve this problem is that we forcefully trigger
CoW on all of the canonical pages in the child process, causing the
pages to receive new physical backing. After this, we can create
the appropriate alias pages and make them point to these new
physical pages in the child. However, recreating the alias mappings
in the child to point to the new physical pages is difficult, since
we lack both a canonical-to-shadow map, or a parent-physical to
child-physical map. Maintaining such a data structure would be
prohibitively expensive for an uncommon operation such as fork.

To overcome this problem, we apply the following algorithm as
an epilogue to the fork library call (also shown in Listing 2). We
create a temporary map of parent-physical to canonical addresses,
which we generate by walking the page tables for each canonical
address in the parent and reading the physical page in the resulting
PTE. Using this map of physical-canonical address pairs, we recon-
struct the alias page tables in the child process. For each alias page
in the parent, we obtain its physical address by doing a page walk
and look up the corresponding canonical address in our map, using
the physical address as key. Then, we touch the virtual address in
order to trigger CoW, resulting in new physical backing in the child.
Next, we look up the new child-physical address with a page walk
of the canonical address in the child. Finally, we create the corre-
sponding page table entries in the alias space of the child, such that
the new alias page points to the new physical backing. Throughout
this algorithm, we sync the parent to wait for the child to finish
these operations, such that the memory state remains consistent.

5.4 Optimizing page entry lookups
Direct access to the page tables allows us to optimize our design
specifically for managing the alias pages. Since we can often grow
the alias space in a linear fashion, we can make assumptions sur-
rounding the details of the page walks. More specifically, we can
cache the pointers to intermediate page table levels, to avoid re-
peating these lookups unnecessarily. This optimization benefits
from the fact that, in a linear design, the higher-level page table

6

DangZero: Efficient Use-After-Free Detection via Direct Page Table Access CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

// construct physical -> canonical map (pre -CoW)

for canon_addr in heap:

phys_addr = page_walk(canon_addr)

map[phys_addr] = canon_addr

// reconstruct alias mappings in child

for alias_addr in alias_space:

phys_addr = page_walk(alias_addr)

canon_addr = map[phys_addr]

*canon_addr; // trigger CoW to force new backing

child_phys_addr = page_walk(canon_addr)

pt_map(alias_addr , child_phys_addr)

Listing 2: Recreating alias mappings in the child after fork.

(L4 and L3) entries change infrequently. Even the lowest page table
level lookup (L2 to L1) only changes once every 512 alias pages. In
practice, every time we create a new alias we increment the L1 page
table index. If this index reaches 512, we wrap around, perform a
new lookup for L2 to L1, and increment the previous levels in a
cascading manner when necessary. This optimization significantly
reduces the number of lookups and exchanges them with much
cheaper increment operations.

6 EVALUATION
We evaluated the security, performance, and memory character-
istics of DangZero using different benchmarks. For our security
evaluation, we used the Juliet Test Suite and confirm detection of
known CVEs. For our performance/memory overhead evaluation,
we used the SPEC CPU2006 and CPU2017 benchmarks (for their
mix of CPU and memory intensive real-world programs) as well as
the Nginx and Apache web servers (representative of long-running,
system-call and allocator-heavy programs). All reported numbers
are the median of 5 runs to reduce noise (unless otherwise stated).
For the SPEC benchmarking suites, we averaged the results using
the geometric mean (geomean) over all the benchmarks.

6.1 Security evaluation
We empirically confirmed that DangZero can accurately detect and
mitigate use-after-free bugs by running the NIST Juliet Test Suite
v1.3 [26]. This test suite contains hundreds of test cases, categorized
by vulnerability type (CWE), and tests for both false positives and
false negatives. DangZero successfully detected all the use-after-
free and double free bugs in the test suite (CWE416 and CWE415,
respectively) with (or without) alias reclaiming and with no false
positives, no unbounded memory usage, and regardless of mem-
ory reuse. Besides the Juliet test suite, DangZero also correctly
identified a use-after-realloc bug contained in the test workset of
400.perlbench (SPEC CPU2006) [47].

Furthermore, we successfully confirm that DangZero is able to
detect six distinct use-after-frees from CVEs and issues reported in
programs such as PHP and Python [1–3, 12, 24, 32]. By means of a
signal handler we verify that the memory access errors triggered
by the use-after-frees originate from page table entries that were
invalidated by DangZero. Finally, DangZero has a relatively small
codebase of 3,100 LOC, which shows the proposed design can be
implemented with a small trusted computing base.

6.2 Performance baseline
In our experiments, we used the virtualized environment without
KML enabled as baseline—see later for the overhead (and speedup
opportunities) of virtualization itself. Therefore, the measured per-
formance overhead is the cost of running KML together with the
slowdown incurred by the overlay allocator. Although we originally
expected KML to provide a consistent speedup (since it removes
the need for mode switching at the syscall interface), in practice we
observed an overall marginal impact. In fact, for SPEC CPU2006,
we observed a geometric mean change of 0% in runtime, with the
extremes being one binary experiencing a speedup of 8%, while
another binary suffers from a slowdown of 4%. We observed similar
effects of KML for the other benchmarks.

Additionally, while we did use a KML-patched glibc to perform
direct calls instead of system calls, we observed that this does not
provide a speedup in practice. Although we confirmed that the
glibc patch does reduce the number of CPU cycles required for a
system call in microbenchmarks, under more complex workloads
this speedup degrades, matching the observations seen in previous
work [29]. With all of this in mind, we believe that comparing to an
in-guest no-KML baseline accurately represents the overhead of our
system. For all the competing systems, we used a bare-metal base-
line with the default system allocator (except MineSweeper’s [19],
which uses the intended jemalloc [21] baseline), matching their
primary deployment scenario.

6.3 SPEC CPU2006
We ran the SPEC CPU2006 benchmarks on a machine with the
following configuration: Intel i7-6700 (Skylake) CPU @ 3.40GHz,
inside a virtual machine using QEMU/KVM, where the VM receives
24 GB of RAM backed by hugepages, and runs Ubuntu 20.04 on
the Linux v4.0-KML kernel. We provided hugepage backing to
QEMU/KVM to avoid high variance due to transparent hugepages.
We also disabled all optional CPU mitigations to avoid interference.
The configuredwatermark for the alias reclaimerwas never reached,
since SPEC CPU2006 consists of only short-lived applications.

6.3.1 Runtime overhead. The individual overhead of each SPEC
CPU2006 binary is displayed in Figure 5. Excluding alias reclaiming,
DangZero reported a 14% geometric mean runtime overhead on
SPEC CPU2006. Forcing a single alias reclaim operation (mark and
sweep) at the end of each program puts the geomean at 16%. For the
relatively short-lived SPEC applications, running without the alias
reclaimer is sustainable. Nonetheless, the mere 2 percentage-point
geomean increase confirms alias reclaim management is efficient.

6.3.2 Components buildup. Next, we look at the sources of our
overhead by measuring each component of DangZero separately,
as shown in Figure 5. We divide our design into five core elements:
(1) using Kernel Mode Linux, (2) creating aliases, (3) using aliases,
(4) disabling aliases, and (5) reclaiming aliases.

Enabling Kernel Mode Linux has a varying effect on the per-
formance of the binaries. While 429.mcf experiences a speedup
of 8%, the runtime of 458.sjeng slows down by 4%. However, as
mentioned earlier, overall the geometric mean of enabling KML is
0%. Next, creating aliases entails that we request pages from the
kernel, insert them into the alias address space, and make them

7

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida

20% 0% 20% 40% 60% 80% 100%

geomean
483.xalancbmk

482.sphinx3
473.astar

471.omnetpp
470.lbm

464.h264ref
462.libquantum

458.sjeng
456.hmmer
453.povray
450.soplex
447.dealII

445.gobmk
444.namd

433.milc
429.mcf
403.gcc

401.bzip2
400.perlbench

enable KML
create aliases
use aliases
disable aliases
reclaim aliases

Figure 5: SPEC CPU2006 runtime overhead for DangZero.

point to the physical pages of the corresponding memory objects.
This step includes the addition of the 8-byte padding for memory
allocations, to contain the canonical pointer normally required dur-
ing free. Including this ensures the right number of alias pages are
created for our measurements. As seen in the figure, creating the
alias pages only incurs a small overhead, of which the efficiency
can be attributed to the direct access to the page tables and our
page lookup caching optimization.

Actually using the alias pages incurs the largest overhead of
all the components. Using the pages means the alias addresses are
returned to the application, and the canonical addresses are stored in
the padding. This component results in relatively high overhead due
to the significant increase in pressure on the translation lookaside
buffer (TLB). After creating the aliases, the next logical step is
to disable the aliases when the memory is freed. Disabling (i.e.,
unmapping) the alias pages provides the actual security benefit
of detecting and mitigating use-after-free bugs, and incurs some
overhead, primarily due the the required TLB invalidation.

The last component concerns the overhead imposed by the need
to gather metadata for the alias reclaiming feature. Most notably,
this includes maintaining object boundary information, zeroing
out memory upon free, and dealing with compressed page tables
during page walks (i.e., uncompressing).

6.3.3 Comparison to other systems. Compared to Oscar [17], which
has the same core functionality as DangZero (without alias reclaim-
ing), DangZero reported significantly better performance. Specifi-
cally, Oscar results in a geomean runtime overhead of 40% on SPEC
CPU2006, whereas our Oscar-like (i.e., no-reclaim) version is at 14%.
Even with alias reclaiming and the corresponding compression
enabled, our overhead (16%) is far less in comparison. Our highest
runtime overheads come from: 471.omnetpp (2.03x), 483.xalancbmk
(1.90x), and 400.perlbench (1.84x). In comparison, Oscar reports the
highest overheads on the same binaries, with 4.5x for 471.omnetpp,
4.0x for 483.xalancbmk, and 4.3x for 400.perlbench.

Table 1 displays the geomean runtime overhead on SPECCPU2006
for various use-after-free protection systems, along with our results.
We include both the overhead reported in the respective papers,
as well as the overhead we measured on our setup. Specifically
for MineSweeper [19] and MarkUs [4], there is some discrepancy
between the reported and measured numbers, since we pin the
SPEC execution to a single core for a fair comparison—whereas
the numbers reported in the original papers do not include the

System Reported Measured
DangZero-base - 14.0%
DangZero-alias-reclaim - 16.0%
Oscar 40.0% 40.0%
MineSweeper 5.4% 10.0%
MarkUs 10.0% 14.0%
FFmalloc 2.3% 1.2%

Table 1: SPEC CPU2006 runtime overhead compared.

overhead of the garbage collection threads offloaded to other cores
(which is important to factor in [14]). The measured number for
MineSweeper/403.gcc is simply the originally reported value, since
this binary crashes on our machine.

As shown in the table, MineSweeper andMarkUs, albeit not offer-
ing detection guarantees, result in comparable (measured) runtime
overhead on SPEC CPU2006. Furthermore, the need for garbage
collection sweeps in the short-lived SPEC binaries is limited and
thus such GC-style solutions could experience far more stress in
other settings. In fact, in our evaluation of Nginx in Section 6.5, we
see that these systems impose a significant runtime overhead in
order to contain physical memory usage. DangZero does not suffer
from this limitation, as the increase in physical memory usage is
less of a concern due to our virtual aliasing design.

FFmalloc [54] reports a very low geomean overhead of 2.3% and
we measured an even lower overhead of 1.2%. However, FFmalloc
trades memory consumption for runtime overhead, as we will show
later. Another concern is that FFmalloc’s fast forwarding allocation
design implies that virtual addresses can never be reused. Since
FFmalloc does not contain any form of garbage collection or re-
claiming, the instrumentation results in scalability issues due to
virtual address space exhaustion when considering long-running
applications, an issue we also show later on Nginx.

6.3.4 Memory overhead. Figure 6 displays the memory overhead
of DangZero for each of the SPEC CPU2006 binaries, in comparison
to the overhead of Oscar (as reported in the paper [17]). These
overhead numbers concern the full (most practical) configuration of
DangZero, which includes alias reclaiming and compression. While
Oscar reaches a maximum memory overhead of 5.2x on 447.dealII,
DangZero incurs an overhead of only 1.4x on the same binary, even
though the systems share the same core aliasing principle. This
discrepancy is due to our page table compression feature.

Since our alias page tables are created using kernel spacememory,
we cannot simply report the resident set size (RSS) of the application
to express the memory overhead. Instead, we calculate the memory
consumption of DangZero by taking the sum of the maximum RSS
and the maximum number of concurrent page tables (one 4K page
per table). The number of page tables pages varies throughout the
execution due to the compression feature having the ability to clean
up pages. Our memory consumption is an upper bound, since the
max RSS and the max number of pages do not necessarily need to
align in time, although this is likely.

Table 2 displays the reported and measured memory overheads
of all the considered systems. DangZero results in a geomean mem-
ory overhead of 75% without compression, which decreases to 25%

8

DangZero: Efficient Use-After-Free Detection via Direct Page Table Access CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

System Reported Measured
DangZero-no-compression - 75.0%
DangZero-with-compression - 25.0%
Oscar 60.0% nontrivial
MineSweeper 11.1% 22.3%
MarkUs 16.0% 26.9%
FFmalloc 61.0% 115.8%

Table 2: SPEC CPU2006 memory overhead compared.

0% 50% 100% 150% 200% 250% 300% 350% 400%
memory overhead

geomean
483.xalancbmk

482.sphinx3
473.astar

471.omnetpp
470.lbm

464.h264ref
462.libquantum

458.sjeng
456.hmmer
453.povray
450.soplex
447.dealII

445.gobmk
444.namd

433.milc
429.mcf
403.gcc

401.bzip2
400.perlbench Oscar

DangZero

Figure 6: SPEC CPU2006 memory overhead for DangZero.

when applying compression. In comparison, Oscar reports a ge-
omean memory overhead of 60%, which we could not easily repro-
duce due to the complexity of estimating the RSS when the VMAs
contain alias pages. The memory overhead of FFmalloc appears
much higher when measured on our machine, which aligns with
the observations of the MineSweeper project [19]. The authors of
MineSweeper measured a 244% geomean overhead for FFmalloc
on SPEC CPU2006, which appears to be a consequence of mem-
ory fragmentation preventing FFmalloc from freeing old pages, for
example if only one small object remains alive on a page.

Overall, the memory overhead of DangZero is comparable to the
state-of-the-art UAF mitigations that focus on memory efficiency,
and is far better than most other UAF mitigations. Combined with
the competitive runtime overhead and its detection guarantees, this
demonstrates the efficacy of our design.

6.4 SPECspeed2017
We evaluated DangZero on SPECspeed2017 (pure C/C++, no For-
tran) with the same setup as the previous experiments on SPEC
CPU2006, except taking the median of 3 runs (ensuring standard de-
viations are minimal). For these experiments, we kept the optional
OpenMP extensions disabled. On SPECspeed2017, we observed a
geomean runtime overhead of 22%, accompanied with a memory
overhead of 30% (Figure 7). DangZero imposes the highest runtime
overhead on the counterparts of the same benchmarks as SPEC
CPU2006, with 2.56x on 623.xalancbmk and 2.08x on 620.omnetpp.

We attempted to run Oscar on SPEC CPU2017, since the num-
bers were not reported in the original paper. Unfortunately, this
is nontrivial due to dependencies on the old glibc version that

0% 25% 50% 75% 100% 125% 150% 175% 200% 225%

geomean
657.xz

644.nab
641.leela

638.imagick
631.deepsjeng

625.x264
623.xalancbmk

620.omnetpp
619.lbm
605.mcf
602.gcc

600.perlbench Runtime
Memory

Figure 7: SPEC CPU2017 overhead for DangZero.

Oscar uses. MineSweeper reports a 10.8% geomean runtime over-
head, however this is including the Fortran binaries. We tried to
extract the geomean for the pure C/C++ benchmarks from the
MineSweeper paper, but this proved problematic due to 620.om-
netpp not being present. The partial geomean (excluding omnetpp)
of MineSweeper is 12%, compared to our partial geomean of 17%.
Moreover, the reported numbers for MineSweeper do not incorpo-
rate overhead offloaded to other cores, although SPEC CPU2017
contains some parallel programs. We measured a geomean of 14.7%
for MineSweeper, where we pin SPEC CPU2017 (without OpenMP)
to one core, and use the reported values for 602.gcc and 644.nab,
because both binaries segfault on our system.

Similarly, MarkUs reports a geomean of 13% runtime overhead.
Again, this includes Fortran binaries, and offloads some overhead
to other cores. We extract the pure C/C++ geomean overhead from
their paper, which is 15.5%. We then measure the overhead of
MarkUs pinned to one core on our setup, which results in a ge-
omean overhead of 15.9%. We used the reported value for 602.gcc,
since it segfaults on our system. Overall, the runtime overhead of
DangZero is again comparable to MineSweeper and MarkUs, while
DangZero provides use-after-free detection guarantees.

For FFmalloc we could not produce conclusive results on our
machine. From the results of SPEC CPU2006 in the FFmalloc paper,
we speculate that 602.gcc is the one binary in SPEC CPU2017 that
mostly impacts the geomean runtime. Unfortunately, this specific
binary crashes on our setup, where FFmalloc reports it cannot
allocate memory after a couple of minutes—even on systems with
64 GB of RAM. Without including 602.gcc, the partial geomean
runtime overhead is negligible—around 0%. However, the partial
geomean for the memory overhead is 103%.

Only MineSweeper reports their memory overhead on SPEC
CPU2017, and they also include their measurements of MarkUs
and FFmalloc. Since the reported geomeans include the Fortran
binaries, we extract the pure C/C++ overheads for each of the
systems, and identify the following geomean memory overheads:
19% for MarkUs, 29.5% for FFmalloc, and 8.1% for MineSweeper.
The memory overhead of DangZero is comparable with 30%.

6.5 Nginx
In order to evaluate DangZero on more realistic long-running appli-
cations, we measured the performance of our system on the popular
Nginx web server. We used Nginx version 1.20.2 in combination
with the wrk HTTP benchmarking tool. We set up two machines

9

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida

0 200 400 600 800 1000
concurrent connections

100

200

300

400

500

600

700

th
ro

ug
hp

ut
: k

Re
qs

/s

Baseline
DangZero
FFmalloc

40

50

60

70

80

90

100

CP
U

ut
iliz

at
io

n

Figure 8: Nginx throughput for DangZero.

and connect them using Mellanox ConnectX 100G NICs, such that
we can fully saturate all the CPUs of the server machine. The two
machines are identical, containing an Intel Xeon Silver 4110 CPU,
32 GB RAM, and running Ubuntu 20.04 LTS. Similar to our other
experiments, we ran Nginx inside a virtual machine for its privi-
lege backend. We assigned 16 GB of RAM to the guest and gave
it direct access to the high-speed NIC via PCI passthrough using
vfio. We configured the wrk benchmark to execute 5 iterations of
30 seconds per run, sending a 64-byte file. Since each machine has
16 CPU cores, there are 16 server workers, and 16 client threads.
Watermarking is set to 5 million invalidated pages, causing it not to
run in 30-second benchmarks. However, in Section 6.5.2 we show
the impact of the alias reclaimer on Nginx in detail.

6.5.1 Performance. Figure 8 displays the throughput in (kilo) re-
quests per second of Nginx for the baseline, DangZero, and FFmal-
loc. The figure shows the buildup in throughput for an increasing
number of concurrent connections, as well as the CPU saturation,
which reaches 100% for all three configurations around 256 connec-
tions. At the point of saturation, where the throughput of Nginx
peaks on the baseline, DangZero imposes a throughput degradation
of 18%, while FFmalloc’s is at 31%.

We also ran a more naive version of DangZero, which does not
perform any form of reclaiming.We recorded a throughput degrada-
tion of 11%. However, this naive setup is not sustainable for longer
runtimes due to alias space exhaustion. We further investigate the
scalability of our system and of others in Section 6.5.2.

Unfortunately, most of the other related systems are unable to
run Nginx for varying reasons. At its core, the web server relies
on the fork system call to create worker processes. Oscar and
MineSweeper do not support forking of processes. Although sup-
port for fork is described in the paper of Oscar, the version the
authors shared with us was missing this component. MineSweeper
does not take the effects of fork into account for their threads
and synchronization primitives, and therefore deadlocks. MarkUs
runs out of memory (with 32 GB RAM available) while running
Nginx at full load. Luckily, Nginx provides settings (intended for
development) to run without the need for fork [43]. However, the
downside of this configuration is that it is more synthetic and can-
not reach proper saturation for all the CPUs (i.e., saturating only
one core), since the server runs as a single process. We managed
to run all of the systems using the forkless setup, with one worker
thread, and one client thread.

System Setup Throughput degradation
DangZero Production 18%
FFmalloc Production 31%
DangZero No fork 23%
Oscar No fork 40%
MineSweeper No fork 56%
MarkUs No fork 43%
Table 3: Nginx throughput degradation compared.

Table 3 displays the throughput degradations that we obtained
in our experiments. For the forkless setup, we pinned the Nginx
server to a single core, since in a production environment with full
load there are also no other spare cores available to offload threads
towards. We confirmed that the single core is fully saturated for all
the forkless experiments. The overhead of DangZero shifts slightly,
from 18% on the production setup to 23% for the forkless variant.

DangZero introduces the least overhead on Nginx, for both se-
tups, by a significant margin. The difference between DangZero
and Oscar is in line with our observations for the SPEC CPU bench-
marks, where our design is more efficient at creating and managing
alias pages. However, MineSweeper and MarkUs, the two GC-style
protection systems, perform significantly worse on Nginx than
on the SPEC benchmarks. This is not unexpected, since, unlike
SPEC, Nginx features the frequent, short-lived memory object al-
locations of common real-world, long-running applications. Such
allocation patterns result in more aggressive garbage collection
and thus a significant overhead—especially evident if the collector
threads are not offloaded to other cores. Next, we also see that
FFmalloc experiences a large shift in overhead: 31%, whereas the
overhead on SPEC was minimal. The high overhead stems from
FFmalloc’s no-memory-reuse design, which causes access locality
to rapidly degrade, combined with frequent kernel interaction for
the (de)allocation of objects. DangZero, on the other hand, can
efficiently create and invalidate aliases via direct page table access,
and does not suffer from slowdown due to TLB pressure, as was
the case with some SPEC CPU benchmarks.

6.5.2 Scalability. Nginx is designed to withstand long runtimes
without requiring restarts. Therefore, we need to evaluate the ca-
pabilities of DangZero to scale to theoretically indefinite runtimes,
without suffering from resource exhaustion. This scenario evidences
the importance of alias reclaiming or other forms of garbage collec-
tion for both the virtual and physical memory footprint.

During the peak throughput of Nginx (at 256 concurrent con-
nections), DangZero imposes a memory overhead of 15% (i.e., the
increase in max RSS). This overhead stems from the additional
pages required to store the alias page tables. However, if we do not
apply compression, this memory overhead raises to 2,400% (25x).
Since Nginx frequently allocates memory, without compression
the alias page tables host a large number of unused entries. This
shows our compression design is effective at drastically reducing
physical memory overhead. In comparison, FFmalloc results in a
2,100% (22x) memory overhead on Nginx.

Next, we show that virtual memory address space exhaustion
is effectively remedied by our alias reclaimer, while other systems

10

DangZero: Efficient Use-After-Free Detection via Direct Page Table Access CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Latency (𝜇s)
Config Req/s 50p 75p 90p 99p

Baseline 623,571 395 439 521 663
WM: None 516,605 502 538 603 752
WM: Low 510,668 505 540 616 837
WM: High 507,412 509* 542* 621* 806*
FFmalloc 426,015 532 655 980 2,650

Table 4: Nginx performance vs. different watermarks (WMs).

0 10 20 30 40 50 60
millions of allocations

0

20

40

60

80

100

al
ia

s s
pa

ce
 u

se
d

(m
illi

on
s o

f p
ag

es
)

Nginx over 10 minutes @ 256 conn
no watermark
low watermark (5M pages)
high watermark (40M pages)

Figure 9: Nginx alias size increase vs. different watermarks.

like Oscar and FFmalloc can reach exhaustion in a matter of days.
Figure 9 displays the growth of DangZero’s alias space over the
number of memory allocations from saturated Nginx over a period
of 10 minutes. We plot the size of the alias space under three dif-
ferent watermark configurations, where the watermark serves as a
threshold for when to run the alias reclaimer. Without a watermark
in place, that is, by never reclaiming aliases, we see that alias space
grows rapidly: reaching nearly 100 million pages in just 10 minutes.
With DangZero currently claiming up to 50 TB of kernel address
space, extrapolating this graph estimates we run out of alias space
within 21 hours. Since Oscar creates the same number of virtual
pages as DangZero, and has a theoretical 128 TB of alias (i.e., user)
space available, it will reach exhaustion in 53 hours. This matches
the (“several days”) estimate of the Oscar paper [17].

Since Nginx does most allocations at the page granularity, the
number of created alias pages by DangZero corresponds closely to
the number of canonical pages. Therefore, FFmalloc exhausts the
virtual address space at the same rate per allocation. With an alias
space of 128 TB, this again results in a maximal runtime of 53 hours
before FFmalloc reaches exhaustion. Note that DangZero could
extend its available alias space by also reserving page table entries
in user space. We also recognize that the approximations for Oscar
and FFmalloc should be stretched slightly due to the additional
overhead they impose, effectively reducing the possible number of
allocations per second. Nonetheless, our calculations highlight that
unbounded address space usage does not scale for allocation-heavy
applications with long runtimes in practice.

Some modern systems now feature 5-level paging [16], provid-
ing 9 extra bits of usable virtual address space. This could extend
the maximum runtime of nonreclaiming systems like Oscar and
FFmalloc to around 3 years. The same of course applies to Dan-
gZero: in environments where alias reclaiming is not crucial, it
could be disabled for extra performance. Also note that this setup is

550

600

650

700 FFmalloc

0 100 200 300 400 500 600
time (seconds)

0

50

100

150

DangZero
MineSweeper (projected)
Baseline

ph
ys

ica
l m

em
or

y
us

ag
e

(M
B)

Figure 10: Nginx physical memory usage over time.

no worst-case scenario for exhaustion, even on Nginx. For example,
instead of using worker processes, Nginx can also be configured to
use threads (one per core). Since all threads share the same virtual
address space, this would decrease the maximum lifetime of Nginx
by, in our case, a factor of 16—about 3 hours on most systems and
up to 70 days on systems with 5-level paging enabled.

By applying a watermark, DangZero can effectively contain the
size of the alias space, as seen in the figure for a watermark of 5 (low)
and 40 (high) million pages. As soon as the number of invalidated
pages hits the threshold, the alias reclaimer is executed, which on
Nginx frees up essentially the entire alias space, since the allocations
are short-lived. Fortunately, the repeated alias reclaiming runs come
at a marginal cost, as shown in Table 4. The throughput (requests
per second) barely decreases as a result of the watermark triggering
alias reclaiming, compared to no watermark. We do see an increase
in latency, since the alias reclaimer temporarily stops the world. For
the high watermark, we actually see that the alias reclaiming stops
the world for too long, resulting in 135 read errors and 31 timeouts
(0.00005% of requests out of 304 million total). The latency numbers
of the high watermark are therefore not completely accurate, since
the dropped requests are not included. The low watermark does
not experience this issue, and is our recommended setting.

Lastly, we evaluated the physical memory overhead of the default
(low) watermark configuration of DangZero on Nginx—again, using
a 10-minute execution. Figure 10 displays the physical memory us-
age over time, when running Nginx with 256 connections. Starting
from the baseline, we initially see an increase in memory usage,
which is the result of alias space page tables being allocated. Then,
after about 30 seconds, the first alias reclaiming run is triggered by
the low watermark. This results in an increase of physical memory
by certain data structures being created, such as the alias freelist
and the compressed (slab) pages freelist. After this initial alias re-
claiming run the physical memory remains stable, since DangZero
is in a steady state, sustaining on the existing alias and compressed
pages freelists. Subsequent runs of the alias reclaimer are triggered
by the alias freelist being exhausted, causing the sweeping phase
to free all reclaimable alias and compressed pages.

We see that, with a low watermark of 5M pages, DangZero sta-
bilizes at a physical memory usage of roughly 76 MB, which is

11

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida

an increase of 176% compared to the baseline. This is a higher in-
crease than we observed in the 30-second runs, since the triggered
watermark causes (roughly constant-size) alias reclaiming data to
be created. Additionally, we suspect that the demand for memory
causes the heap to double (from brk). In comparison, FFmalloc ex-
periences an ever-increasing memory overhead, starting at 596 MB
(22x) and growing up to 678 MB (25x) in 10 minutes (at a rate of 12
GB/day). While FFmalloc should be able to reclaim all memory after
it is freed, we expect there to be a memory leak in the metadata
of the allocator. To bound such increasing physical memory usage,
GC-style solutions such as MarkUs and MineSweeper need to ramp
up their garbage collection efforts, degrading performance.

For instance, during the 10-minute Nginx run, we observed that
MineSweeper had to perform as many as 11,929 sweeps (vs. only
19 for DangZero), despite yielding a projected steady-state phys-
ical memory usage of ≈110 MB (notably higher than DangZero’s
≈80 MB, as shown in Figure 10). Note that, without fork support, we
could not directly measure physical memory usage of MineSweeper
(ditto for MarkUs and Oscar) in our production configuration with
16 workers. As such, we measured ≈7 MB of usage for MineSweeper
(vs. MarkUs quickly running out of 32 GB memory and Oscar being
again nontrivial to measure) for a single worker and projected the
usage to 16 workers (accounting for shared pages).

6.6 Apache
In addition to Nginx, we also evaluate DangZero on the Apache
HTTP server. We configured Apache to run in its prefork (i.e., non-
threaded) setting to ensure compatibilty with the non-thread-safe
DangZero instrumentation. In order to accurately measure the run-
time overhead, we disable the internal caching of the custom mem-
ory allocator within Apache. This ensures that Apache does not
bypass the instrumentation of DangZero and the other related sys-
tems. We confirm that disabling the internal caching functionality
does not incur a negative performance penalty, which is attributed
to the underlying allocator (glibc) being sufficiently optimized
(e.g., by batching memory allocations from the kernel).

We used Apache version 2.4.54 in combination with the wrk
HTTP benchmarking tool. Unfortunately, we do not manage to
reach full CPU saturation using the two connected machines used
for Nginx. Therefore, we instead run Apache in a loopback fashion
on the machine described in Section 6.3, again inside a virtual
machine. With this setup, we manage to reach CPU saturation by
running the wrk benchmark with 7 client threads, and Apache with
256 worker processes. The remaining settings are identical to the
ones described for Nginx in the previous section.

We attempt to run Apache with all of the related systems in order
to compare with DangZero, however only FFmalloc results in suc-
cessful execution. As seenwith Nginx, both Oscar andMineSweeper
cannot overcome the forking behavior of Apache, and MarkUs runs
out of memory again. We manage to reach CPU saturation for the
baseline, DangZero, and FFmalloc at 176 concurrent connections,
with a throughput degradation of 19.1% for DangZero, and 28.7%
for FFmalloc. These runtime overhead results closely correspond to
the ones observed for Nginx, which suggests that our results reflect
a general trend on real-world applications.

6.7 Virtualization
Since our overlay allocator requires isolation from other processes
to execute in a safe manner, some form of virtualization is a re-
quirement for most use cases. While the cost of virtualization may
greatly vary across applications and is generally considered negligi-
ble [46], we also investigated its impact in our setup—compared to
the bare-metal host as baseline. For SPEC CPU2006, we observed a
geomean runtime overhead of 4.2%, which can mostly be attributed
to the 464.h264ref binary experiencing a 33% slowdown. For Nginx,
we measured an approximate throughput degradation of 8%.

However, the cost of virtualization can be more than compen-
sated by benefiting from the unikernel-like design of our system,
for example with unikernel optimizations proposed by Lupine
Linux [29]. For instance, Lupine Linux shows that a 33% throughput
increase can be achieved on Nginx by merely stripping features off
the Linux kernel that are not needed in a unikernel setup. For a
fair comparison with the state of the art, we did not enable these
and other unikernel optimizations in DangZero (which would have
likely resulted in an overall speedup of DangZero-instrumented Ng-
inx running in virtualized KML compared to a bare-metal baseline).
Furthermore, if the target environment on which to apply Dan-
gZero is already virtualized (e.g., in the cloud), then the overhead
of virtualization is not applicable.

7 RELATEDWORK
In this section, we review prior work on UAF defenses.

7.1 Secure allocators
Much of the literature focuses on the mitigation of UAF by means of
secure allocators [4, 19, 20, 31, 33, 48, 54, 56]. Early solutions [7, 44]
provide probabilistic protection through randomized allocation—
making it difficult (not impossible), for the attacker to target specific
objects. Moreover, some also re-initialize the free memory [44].

Solutions such as Cling [5] and TAT [52] do not prevent UAF per
se, but ensure that all reuse is type safe. UAF is still possible, but
limited to using dangling pointers to objects of the same type.

Another common technique builds on garbage collection (GC) [4,
10, 19, 23]. For instance, the system may cause deallocations to be
quarantined until the GC establishes that no references to them
remain. A drawback is that a GC running concurrently is not cheap,
especially since strong security requires regular stop-the-world
synchronization. As an alternative, CRCount tracks the number of
references to each object and releases freed memory for reuse when
the reference count reaches zero [50]. An extreme solution, used in
FFmalloc [54], is never to reuse and unmap all freed memory.

7.2 Use-after-free detectors
On the detection side, we find various sanitizers. Some explicitly
track pointers to each object and invalidate themwhen it is freed [30,
49, 53, 55, 57]. All subsequent dereferences of the pointers result in
a crash. However, tracking all pointers to objects throughout the
execution requires expensive metadata management.

Instead of pointer tracking, it is also possible to focus on the
allocations, although such approaches are generally less accurate.
A simple technique, used by ASan [47], protects allocations with
poison values (where each access terminates the process). ASan

12

DangZero: Efficient Use-After-Free Detection via Direct Page Table Access CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

additionally places freed allocations in quarantine to reduce the
probability of temporal memory errors—a simple measure, vulnera-
ble to massaging through continuous allocation and deallocation.
Moreover, ASan has high performance/memory overhead and of-
fers limited security guarantees against advanced attacks. Other
approaches, such as xTag [9], Vik [15] and others [13, 22, 25, 41] tag
the allocated memory and the pointer with an identifier and verify,
upon dereference, that the tags of pointer and memory match.

While few detectors apply to binary programs, there are ex-
ceptions. Early work on memory debugging unmapped memory
upon free [38, 45] or used dynamic binary instrumentation [42].
While useful for debugging, such approaches incur a very high
memory and performance overhead. Recently, Google Chrome has
integrated sampled page-permission-based heap memory error de-
tection for end users, resulting in over a hundred (and predomi-
nantly) use-after-free bugs being discovered post deployment in
the field [51]. Some alias-based approaches also work on binary
programs [17, 18]. Like DangZero, these solutions map allocations
to new virtual pages (aliases). Unlike DangZero, existing work does
not properly handle memory reclamation.

7.3 Virtualization for security
Finally, there is significant work on virtualization for security, espe-
cially on secure hypervisors [37]. Some projects use virtualization
extensions for secure domain isolation, using unprivileged instruc-
tions to switch EPT-based domains [28, 35, 46]. Of particular inter-
est to DangZero are prior efforts to make privileged instructions
available to applications in guest mode (unikernel-style) to support
mitigations, such as the sandboxing environment of Dune [6] and
the efficient multi-variant execution support of MvArmor [27]. In
DangZero, we use the ring 0 access to implement a highly efficient
alias-based detector of UAF via direct page table access.

8 LIMITATIONS
Our current DangZero prototype has two main limitations that can
be addressed with more engineering effort. First, since we build
on KML, DangZero cannot currently run on Linux kernel versions
newer than v4.0 (the latest release for KML). We believe porting
KML to a newer kernel version is feasible, although mitigations
such as kernel page table isolation (KPTI) require special handling.
Second, the current implementation of DangZero is not yet thread-
safe. Thread safety can be addressed with page table locking, as also
suggested by prior systems that support direct page table access [6].
Additional limitations as a consequence of running programs in
isolation, for example not sharing memory across processes, require
hypervisor-based solutions such as cross-VM page sharing.

On a more fundamental level, our design has two other limita-
tions. First, similar to all the state-of-the-art solutions [4, 17, 19],
DangZero targets the default (malloc-family) allocator. However,
applications may also rely on custom allocators (based on malloc,
mmap, etc.) [8]. Simple custom allocators (e.g., plain malloc wrap-
pers such as Nginx’ ngx_calloc) are supported out of the box, but
others may require custom instrumentation. Nonetheless, since
our instrumentation strategy is based on an overlay allocator, one
could, in principle, implement a custom overlay allocator for each
custom allocator in the target application. Second, applications may

rely on custom pointer encoding. Common encodings (e.g., slab
pointers in Nginx, with custom metadata in the lowest 2 bits—see
NGX_SLAB_PAGE_MASK) yield a memory representation preserving
the pointer-object relationship and are supported out of the box.
However, more sophisticated encodings may hinder our alias re-
claimer’s ability to locate some (dangling) pointers in memory/reg-
isters, a well-known limitation shared with all the solutions based
on conservative garbage collection techniques [4, 10, 19, 34]. If
necessary, an option is to explicitly implement support for custom
encodings on a per-application basis, but the resulting implementa-
tion complexity may vary.

9 CONCLUSION
Using page protection facilities offered by the MMU to detect use-
after-free bugs is an old idea originally devised for debugging. Over
two decades later, despite modern alias-based optimizations, state-
of-the-art defense solutions still suffer from nontrivial performance
and scalability costs. With DangZero, we show these costs are
not fundamental and a practical solution is possible. Using direct
page table access, DangZero eliminates the operating system from
the fast (allocation/deallocation) path and also unlocks efficient
metadata management for GC-style alias reclaiming. Our evalua-
tion shows our design significantly improves the performance of
prior alias-based solutions—without incurring memory exhaustion
or relaxing detection guarantees. On long-running benchmarks
that commonly feature frequent, short-lived allocations, DangZero
is also significantly more efficient than state-of-the-art GC-style
protection systems—without resorting to spare CPU cores or mem-
ory overprovisioning. Finally, our design is amenable to arbitrary
unikernel-style optimizations described in literature, which one
could adopt to reduce DangZero’s overheads even further.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their feedback. We also
thank Gabor Kozar and Kyrian Maat for their preliminary work
on the Dune and KML implementations, respectively. This work
was supported by the EU’s Horizon 2020 programme under grant
agreement No. 825377 (UNICORE), the Dutch Ministry of Economic
Affairs and Climate through the AVR program (Memo project) and
the Dutch Science Organization NWO through projects TROPICS,
Theseus, and Intersect.

REFERENCES
[1] CVE-2015-2787. PHP 5.5.14 Use-After-Free Vulnerability. https://bugs.php.net/

bug.php?id=68976
[2] CVE-2015-6835. PHP 5.4.44 Use-After-Free Vulnerability. https://www.exploit-

db.com/exploits/38123
[3] CVE-2016-5773. PHP 7.0.7 Use-After-Free Vulnerability. https://bugs.php.net/

bug.php?id=72434
[4] Sam Ainsworth and Timothy M. Jones. 2021. MarkUs: Drop-in use-after-free

prevention for low-level languages. In USENIX Security.
[5] Periklis Akritidis. 2010. Cling: A memory allocator to mitigate dangling pointers.

In USENIX Security.
[6] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazieres, and

Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU Fea-
tures. In OSDI.

[7] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In PLDI.

[8] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2002. Reconsider-
ing custom memory allocation. In OOPSLA.

13

https://bugs.php.net/bug.php?id=68976
https://bugs.php.net/bug.php?id=68976
https://www.exploit-db.com/exploits/38123
https://www.exploit-db.com/exploits/38123
https://bugs.php.net/bug.php?id=72434
https://bugs.php.net/bug.php?id=72434

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida

[9] Lukas Bernhard, Michael Rodler, Thorsten Holz, and Lucas Davi. 2022. xTag:
Mitigating Use-After-Free Vulnerabilities via Software-Based Pointer Tagging
on Intel x86-64. In IEEE EuroS&P.

[10] Hans-J Boehm, Alan J. Demers, and Scott Shenker. 1991. Mostly parallel garbage
collection. In PLDI.

[11] Jeff Bonwick et al. 1994. The slab allocator: An object-caching kernel memory
allocator. In USENIX ATC.

[12] Jeremy Brown. CVE-2015-3205. Libmimedir VCF Memory Corruption Proof
Of Concept. https://packetstormsecurity.com/files/132257/Libmimedir-VCF-
Memory-Corruption-Proof-Of-Concept.html

[13] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. 2018. CUP:
Comprehensive user-space protection for C/C++. In AsiaCCS.

[14] Zixian Cai, Stephen Blackburn, Michael Bond, and Martin Maas. 2022. Distilling
the Real Cost of Production Garbage Collectors. In ISPASS.

[15] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao, Ruoyu Wang, Yan Shoshi-
taishvili, Adam Doupé, and Gail-Joon Ahn. 2022. ViK: practical mitigation of
temporal memory safety violations through object ID inspection. In ASPLOS.

[16] Jonathan Corbet. 2017. Five-level page tables. https://lwn.net/Articles/717293.
[17] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A Practical

Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In USENIX
Security.

[18] Dinakar Dhurjati and Vikram Adve. 2006. Efficiently detecting all dangling
pointer uses in production servers. In DSN.

[19] Márton Erdős, Sam Ainsworth, and Timothy M. Jones. 2022. MineSweeper: A
Clean Sweep for Drop-In Use-after-Free Prevention. In ASPLOS.

[20] Daniel Micay et al. 2019. Hardened malloc. https://github.com/GrapheneOS/
hardened_malloc.

[21] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.
BSDCan (2006).

[22] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. 2021. PTAuth: Tempo-
ral Memory Safety via Robust Points-to Authentication. In USENIX Security.

[23] Nathaniel Wesley Filardo, Brett F Gutstein, Jonathan Woodruff, Sam Ainsworth,
Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, et al. 2020. Cornucopia: Temporal safety
for CHERI heaps. In IEEE S&P.

[24] Dinko Galetic and Denis Kasak. 2017. Use-After-Free Leading to An Invalid
Pointer Dereference. https://hackerone.com/reports/213261

[25] Binfa Gui, Wei Song, and Jeff Huang. 2021. UAFSan: an object-identifier-based
dynamic approach for detecting use-after-free vulnerabilities. In ISSTA.

[26] Frederick Boland Jr. and Paul Black. 2012. The Juliet 1.1 C/C++ and Java Test
Suite. IEEE Computer (2012).

[27] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and Efficient
Multi-variant Execution Using Hardware-assisted Process Virtualization. InDSN.

[28] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No need to hide: Protecting safe regions on commodity hardware. In
EuroSys.

[29] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux
in Unikernel Clothing. In EuroSys.

[30] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification. In NDSS.

[31] Daan Leijen. 2020. Mimalloc. https://github.com/microsoft/mimalloc.
[32] John Leitch. Issue 24613. array.fromstring use after free. https://bugs.python.

org/issue24613
[33] Beichen Liu, Pierre Olivier, and Binoy Ravindran. 2019. SlimGuard: A Secure and

Memory-Efficient Heap Allocator. In Middleware.

[34] Daiping Liu, Mingwei Zhang, and Haining Wang. 2018. A robust and efficient
defense against use-after-free exploits via concurrent pointer sweeping. In CCS.

[35] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
memory disclosure with efficient hypervisor-enforced intra-domain isolation. In
CCS.

[36] Toshiyuki Maeda and Akinori Yonezawa. 2003. Kernel Mode Linux: Toward an
operating system protected by a type theory. In ASIAN.

[37] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-
gil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB reduction and
attestation. In IEEE S&P.

[38] Microsoft. 2022. GFlags and PageHeap. https://docs.microsoft.com/en-us/
windows-hardware/drivers/debugger/gflags-and-pageheap

[39] Matt Miller. 2019. Trends and Challenges in the Vulnerability Mitigation Land-
scape. https://www.usenix.org/conference/woot19/presentation/miller

[40] MITRE. 2021. 2021 CWE Top 25 Most Dangerous Software Weaknesses. https:
//cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

[41] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In ISMM.

[42] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI.

[43] Nginx. 2022. Run nginx with “daemon off” or “master_process off” settings
in a production environment. http://nginx.org/en/docs/faq/daemon_master_
process_off.html

[44] Gene Novark and Emery D. Berger. 2010. DieHarder: Securing the Heap. In CCS.
[45] Bruce Perens. 1987. Electric Fence. https://elinux.org/Electric_Fence
[46] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,

and Michalis Polychronakis. 2020. xMP: Selective memory protection for kernel
and user space. In IEEE S&P.

[47] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
ATC.

[48] Kostya Serebryany and Dmitry Vyukov. -. Scudo Hardened Allocator. https:
//llvm.org/docs/ScudoHardenedAllocator.html.

[49] Zekun Shen and Brendan Dolan-Gavitt. 2020. HeapExpo: Pinpointing promoted
pointers to prevent use-after-free vulnerabilities. In ACSAC.

[50] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunheung Paek.
2019. CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-
after-free in Legacy C/C++. In NDSS.

[51] Vlad Tsyrklevich. 2019. GWP-ASan: Sampling heap memory error detection
in-the-wild. https://sites.google.com/a/chromium.org/dev/Home/chromium-
security/articles/gwp-asan

[52] Erik VanDer Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos, and Cristiano
Giuffrida. 2018. Type-After-Type: Practical and complete type-safe memory reuse.
In ACSAC.

[53] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:
Scalable use-after-free detection. In EuroSys.

[54] Brian Wickman, Hong Hu, Insu Yun, Daehee Jang, JungWon Lim, Sanidhya
Kashyap, and Taesoo Kim. 2021. Preventing Use-After-Free Attacks with Fast
Forward Allocation. In USENIX Security.

[55] Yves Younan. 2015. FreeSentry: Protecting Against Use-After-Free Vulnerabilities
Due to Dangling Pointers. In NDSS.

[56] Insu Yun, Woosun Song, Seunggi Min, and Taesoo Kim. 2021. HardsHeap: A
Universal and Extensible Framework for Evaluating Secure Allocators. In CCS.

[57] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. Bogo: Buy spatial memory
safety, get temporal memory safety (almost) free. In ASPLOS.

14

https://packetstormsecurity.com/files/132257/Libmimedir-VCF-Memory-Corruption-Proof-Of-Concept.html
https://packetstormsecurity.com/files/132257/Libmimedir-VCF-Memory-Corruption-Proof-Of-Concept.html
https://lwn.net/Articles/717293
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://hackerone.com/reports/213261
https://github.com/microsoft/mimalloc
https://bugs.python.org/issue24613
https://bugs.python.org/issue24613
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://www.usenix.org/conference/woot19/presentation/miller
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
http://nginx.org/en/docs/faq/daemon_master_process_off.html
http://nginx.org/en/docs/faq/daemon_master_process_off.html
https://elinux.org/Electric_Fence
https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/articles/gwp-asan
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/articles/gwp-asan

DangZero: Efficient Use-After-Free Detection via Direct Page Table Access CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Benchmark b-Host b-VM b-jemalloc DangZero Oscar FFmalloc MarkUs MineSweeper
400.perlbench 183 187 176 344 785 187 226 209
401.bzip2 303 311 304 302 308 304 304 304
403.gcc 161 165 206 228 203 241 363 239
429.mcf 176 196 176 181 176 176 176 175
433.milc 300 313 305 324 318 323 316 307
444.namd 257 258 257 257 257 256 257 257
445.gobmk 318 321 319 324 320 319 322 321
447.dealII 196 193 194 271 580 197 211 209
450.soplex 144 147 146 150 150 155 157 149
453.povray 90.7 97.5 89.2 101 95,6 89,1 90,6 89,6
456.hmmer 259 256 206 260 261 224 262 208
458.sjeng 357 354 357 367 362 357 357 357

462.libquantum 200 208 199 204 205 198 199 199
464.h264ref 331 499 318 495 347 326 322 319
470.lbm 176 176 175 177 176 177 176 179

471.omnetpp 226 237 187 480 1026 201 326 265
473.astar 281 294 263 347 392 263 277 269

482.sphinx3 323 334 323 336 350 328 343 343
483.xalancbmk 131 139 97,8 264 533 130 321 258

Table 5: Absolute values of CPU SPEC 2006 runtimes. (b- indicates baseline)

Benchmark b-Host b-VM b-jemalloc DangZero FFmalloc MarkUs MineSweeper
600.perlbench_s 271 282 272 362 279 309 300

602.gcc_s 386 397 380 519 - 625* 505*
605.mcf_s 567 619 564 710 556 557 559
619.lbm_s 946 956 957 965 944 945 949

620.omnetpp_s 364 402 329 836 357 702 410
623.xalancbmk_s 284 287 169 734 236 437 438

625.x264_s 375 379 375 379 375 375 375
631.deepsjeng_s 341 352 341 356 341 341 341
638.imagick_s 6341 6855 6312 6832 6320 6319 6319
641.leela_s 455 474 453 512 468 493 499
644.nab_s 2114 1978 2110 1980 2125 2133 2131*
657.xz_s 2241 2333 2238 2345 2240 2237 2240

Table 6: Absolute values of CPU SPECspeed 2017 runtimes. (b- indicates baseline, * indicates reported ratio)

15

	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Page tables
	2.3 Access to privileged CPU features

	3 Threat Model
	4 DangZero
	4.1 Temporal safety through page protection
	4.2 Creating and invalidating aliases
	4.3 Alias reclaimer

	5 Implementation
	5.1 Privilege backend
	5.2 Alias page tables
	5.3 Supporting fork
	5.4 Optimizing page entry lookups

	6 Evaluation
	6.1 Security evaluation
	6.2 Performance baseline
	6.3 SPEC CPU2006
	6.4 SPECspeed2017
	6.5 Nginx
	6.6 Apache
	6.7 Virtualization

	7 Related Work
	7.1 Secure allocators
	7.2 Use-after-free detectors
	7.3 Virtualization for security

	8 Limitations
	9 Conclusion
	References

